Persistent Homology Over Directed Acyclic Graphs

We define persistent homology groups over any set of spaces which have inclusions defined so that the corresponding directed graph between the spaces is acyclic as well as along any subgraph of this directed graph. This method simultaneously generalizes standard persistent homology, zigzag persistence, and multidimensional persistence to arbitrary directed acyclic graphs (DAGs), and it also allows the study of more general families of topological spaces or point-cloud data. We give an algorithm to compute the persistent homology groups simultaneously for all subgraphs which contain a single source and a single sink in O(n4) arithmetic operations, where n is the number of vertices in the graph. We then demonstrate as an application of these tools a method to overlay two distinct filtrations of the same underlying space, which allows us to detect the most significant barcodes using considerably fewer points than standard persistence.

[1]  Marek Karpinski,et al.  Polynomial time algorithms for modules over finite dimensional algebras , 1997, ISSAC.

[2]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[3]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[4]  S. Lane Categories for the Working Mathematician , 1971 .

[5]  Eugene M. Luks,et al.  Testing isomorphism of modules , 2008 .

[6]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[7]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[8]  Michael Barot Representations of Quivers , 2015 .

[9]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[10]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[11]  David Letscher On persistent homotopy, knotted complexes and the Alexander module , 2012, ITCS '12.

[12]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[13]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[14]  Jun-Ichi Miyachi REPRESENTATIONS AND QUIVERS FOR RING THEORISTS , 2000 .

[15]  Gunnar E. Carlsson,et al.  Zigzag Persistence , 2008, Found. Comput. Math..

[16]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[17]  Emerson G. Escolar,et al.  Persistence Modules on Commutative Ladders of Finite Type , 2014, Discret. Comput. Geom..

[18]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[21]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[22]  Gunnar Carlsson,et al.  Applications of Zigzag Persistence to Topological Data Analysis , 2011, ArXiv.

[23]  Ulrich Bauer,et al.  Distributed Computation of Persistent Homology , 2014, ALENEX.

[24]  R. Tennant Algebra , 1941, Nature.

[25]  R. Ho Algebraic Topology , 2022 .

[26]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[27]  Afra Zomorodian,et al.  Computing Multidimensional Persistence , 2010, J. Comput. Geom..

[28]  Frédéric Chazal,et al.  Weak feature size and persistent homology: computing homology of solids in Rn from noisy data samples , 2005, SCG.

[29]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[30]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[31]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .