Control Argumentation Frameworks

Dynamics of argumentation is the family of techniques concerned with the evolution of an argumentation framework (AF), for instance to guarantee that a given set of arguments is accepted. This work proposes Control Argumentation Frameworks (CAFs), a new approach that generalizes existing techniques, namely normal extension enforcement, by accommodating the possibility of uncertainty in dynamic scenarios. A CAF is able to deal with situations where the exact set of arguments is unknown and subject to evolution, and the existence (or direction) of some attacks is also unknown. It can be used by an agent to ensure that a set of arguments is part of one (or every) extension whatever the actual set of arguments and attacks. A QBF encoding of reasoning with CAFs provides a computational mechanism for determining whether and how this goal can be reached. We also provide some results concerning soundness and completeness of the proposed encoding as well as complexity issues.

[1]  Claudette Cayrol,et al.  Argumentation update in YALLA (Yet Another Logic Language for Argumentation) , 2016, Int. J. Approx. Reason..

[2]  Sébastien Konieczny,et al.  On the Revision of Argumentation Systems: Minimal Change of Arguments Statuses , 2014, KR.

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  Andreas Herzig,et al.  A Dynamic Logic Framework for Abstract Argumentation , 2014, KR.

[5]  Ringo Baumann,et al.  Expanding Argumentation Frameworks: Enforcing and Monotonicity Results , 2010, COMMA.

[6]  Hans Kleine Büning,et al.  Theory of Quantified Boolean Formulas , 2021, Handbook of Satisfiability.

[7]  Matti Järvisalo,et al.  Complexity Results and Algorithms for Extension Enforcement in Abstract Argumentation , 2016, AAAI.

[8]  Sébastien Konieczny,et al.  On the merging of Dung's argumentation systems , 2007, Artif. Intell..

[9]  Li Jin,et al.  Dynamics of argumentation systems: A division-based method , 2011, Artif. Intell..

[10]  Serena Villata,et al.  On the Input/Output behavior of argumentation frameworks , 2014, Artif. Intell..

[11]  Leon van der Torre,et al.  A Logical Theory about Dynamics in Abstract Argumentation , 2013, SUM.

[12]  Luca Pulina The Ninth QBF Solvers Evaluation - Preliminary Report , 2016, QBF@SAT.

[13]  Bernd Becker,et al.  QBF with Soft Variables , 2014, Electronic Communication of The European Association of Software Science and Technology.

[14]  Anthony Hunter,et al.  Probabilistic qualification of attack in abstract argumentation , 2014, Int. J. Approx. Reason..

[15]  Philippe Besnard,et al.  Checking the acceptability of a set of arguments , 2004, NMR.

[16]  Serena Villata,et al.  Argumentative Agents Negotiating on Potential Attacks , 2011, KES-AMSTA.

[17]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[18]  Jörg Rothe,et al.  Verification in Argument-Incomplete Argumentation Frameworks , 2015, ADT.

[19]  Antonis C. Kakas,et al.  Argumentation based decision making for autonomous agents , 2003, AAMAS '03.

[20]  Sébastien Konieczny,et al.  Extension Enforcement in Abstract Argumentation as an Optimization Problem , 2015, IJCAI.

[21]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[22]  Anthony Hunter,et al.  Elements of Argumentation , 2007, ECSQARU.

[23]  Claudette Cayrol,et al.  Change in Abstract Argumentation Frameworks: Adding an Argument , 2010, J. Artif. Intell. Res..

[24]  Jörg Rothe,et al.  Verification in Attack-Incomplete Argumentation Frameworks , 2015, ADT.

[25]  Pietro Baroni,et al.  An introduction to argumentation semantics , 2011, The Knowledge Engineering Review.

[26]  Phan Minh Dung,et al.  Assumption-Based Argumentation , 2009, Argumentation in Artificial Intelligence.