Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

[1]  K. Gabbay,et al.  Aldose reductase inhibition: studies with alrestatin. , 1979, Metabolism: clinical and experimental.

[2]  A. Meister Selective modification of glutathione metabolism. , 1983, Science.

[3]  A. Beyer-Mears,et al.  Reversal of Diabetic Cataract by Sorbinil, an Aldose Reductase Inhibitor , 1985, Diabetes.

[4]  D. Connolly,et al.  Determination of the number of endothelial cells in culture using an acid phosphatase assay. , 1986, Analytical biochemistry.

[5]  T. Tanimoto,et al.  Characterization of aldose reductase and aldehyde reductase from rat testis. , 1989, Biochimica et biophysica acta.

[6]  L. Fong,et al.  High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. , 1990, Biochimica et biophysica acta.

[7]  D. Faulds,et al.  Epalrestat. A review of its pharmacology, and therapeutic potential in late-onset complications of diabetes mellitus. , 1993, Drugs & aging.

[8]  K Y Hui,et al.  A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). , 1994, The Journal of biological chemistry.

[9]  N. Hotta [Epalrestat]. , 2020, Nihon rinsho. Japanese journal of clinical medicine.

[10]  K. Kugiyama,et al.  Intracoronary infusion of reduced glutathione improves endothelial vasomotor response to acetylcholine in human coronary circulation. , 1998, Circulation.

[11]  N. Sato,et al.  Effect of epalrestat, an aldose reductase inhibitor, on the generation of oxygen-derived free radicals in neutrophils from streptozotocin-induced diabetic rats. , 1998, Endocrinology.

[12]  N. Hotta,et al.  Epalrestat , an Aldose Reductase Inhibitor , Reduces the Levels of N ε-( Carboxymethyl ) lysine Protein Adducts and Their Precursors in Erythrocytes From Diabetic Patients , 2000 .

[13]  H. Lum,et al.  Oxidant stress and endothelial cell dysfunction. , 2001, American journal of physiology. Cell physiology.

[14]  J. Lehman,et al.  Flow Cytometric Quantitation of Cellular Proteins , 2002 .

[15]  L. Eckersley Role of the Schwann cell in diabetic neuropathy. , 2002, International review of neurobiology.

[16]  M. Tsukamoto,et al.  Paraquat-induced oxidative stress and dysfunction of the glutathione redox cycle in pulmonary microvascular endothelial cells. , 2002, Toxicology and applied pharmacology.

[17]  K. Nakashima,et al.  PI3K is a key molecule in the Nrf2‐mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells , 2003, FEBS letters.

[18]  H. Yamawaki,et al.  Thioredoxin: A Key Regulator of Cardiovascular Homeostasis , 2003, Circulation research.

[19]  J. Joseph,et al.  Supplementation of Endothelial Cells with Mitochondria-targeted Antioxidants Inhibit Peroxide-induced Mitochondrial Iron Uptake, Oxidative Damage, and Apoptosis* , 2004, Journal of Biological Chemistry.

[20]  J. Morrow,et al.  Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. , 2004, The Biochemical journal.

[21]  D. Nebert,et al.  Glutamate Cysteine Ligase Catalysis , 2005, Journal of Biological Chemistry.

[22]  Takahiro Shibata,et al.  Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1 , 2006, Molecular and Cellular Biology.

[23]  Masayuki Yamamoto,et al.  Nrf2-mediated Induction of Cytoprotective Enzymes by 15-Deoxy-Δ12,14-Prostaglandin J2 Is Attenuated by Alkenal/one Oxidoreductase* , 2006, Journal of Biological Chemistry.

[24]  L. Sordillo,et al.  Thioredoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells. , 2006, The Biochemical journal.

[25]  R. Stocker,et al.  Heme oxygenase-1: a novel drug target for atherosclerotic diseases? , 2006, Circulation.

[26]  R. Kawamori,et al.  Long-Term Clinical Effects of Epalrestat, an Aldose Reductase Inhibitor, on Diabetic Peripheral Neuropathy , 2006, Diabetes Care.

[27]  K. Nakashima,et al.  Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. , 2006, Biochemical and biophysical research communications.

[28]  D. Leibfritz,et al.  Free radicals and antioxidants in normal physiological functions and human disease. , 2007, The international journal of biochemistry & cell biology.

[29]  Shyam Biswal,et al.  Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. , 2007, Annual review of pharmacology and toxicology.

[30]  A. Landar,et al.  Accumulation of 15-deoxy-delta(12,14)-prostaglandin J2 adduct formation with Keap1 over time: effects on potency for intracellular antioxidant defence induction. , 2008, The Biochemical journal.

[31]  T. Aw,et al.  Insulin stimulation of gamma-glutamylcysteine ligase catalytic subunit expression increases endothelial GSH during oxidative stress: influence of low glucose. , 2008, Free radical biology & medicine.

[32]  G. Cepinskas,et al.  Inflammatory Response in Microvascular Endothelium in Sepsis: Role of Oxidants , 2008, Journal of clinical biochemistry and nutrition.

[33]  E. Feldman,et al.  Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. , 2009, Antioxidants & redox signaling.

[34]  R. Kawamori,et al.  Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. , 2009, Endocrine journal.

[35]  A. Józkowicz,et al.  Role of Heme Oxygenase-1 in Human Endothelial Cells: Lesson From the Promoter Allelic Variants , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[36]  N. Hotta [Aldose reductase inhibitor]. , 2010, Nihon rinsho. Japanese journal of clinical medicine.

[37]  H. J. Kim,et al.  Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. , 2010, American journal of physiology. Renal physiology.

[38]  N. Maulik,et al.  Thioredoxin-1 Gene Therapy Enhances Angiogenic Signaling and Reduces Ventricular Remodeling in Infarcted Myocardium of Diabetic Rats , 2010, Circulation.

[39]  T. Mizushima Drug discovery and development focusing on existing medicines: drug re-profiling strategy. , 2011, Journal of biochemistry.

[40]  O. Lunov,et al.  Thioredoxin-1 Promotes Anti-Inflammatory Macrophages of the M2 Phenotype and Antagonizes Atherosclerosis , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[41]  R. Kawamori,et al.  Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy , 2012, Diabetic medicine : a journal of the British Diabetic Association.

[42]  X. Le,et al.  Concomitant Induction of Heme Oxygenase‐1 Attenuates the Cytotoxicity of Arsenic Species from Lumbricus Extract in Human Liver HepG2 Cells , 2012, Chemistry & biodiversity.

[43]  Huang-Hui Chen,et al.  4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. , 2012, Free radical biology & medicine.

[44]  Keisuke Sato,et al.  Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation☆ , 2013, Redox biology.

[45]  B. Kalyanaraman Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms☆ , 2013, Redox biology.

[46]  A. Levonen,et al.  The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer☆ , 2013, Redox biology.

[47]  Mili B. Patel,et al.  Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells☆ , 2013, Redox biology.

[48]  Hiroyuki Suzuki,et al.  Transforming Growth Factor-β Induces Transcription Factors MafK and Bach1 to Suppress Expression of the Heme Oxygenase-1 Gene* , 2013, The Journal of Biological Chemistry.

[49]  R. Soiza,et al.  Evidence of endothelial dysfunction in the development of Alzheimer's disease: Is Alzheimer's a vascular disorder? , 2013, American journal of cardiovascular disease.

[50]  Masayuki Yamamoto,et al.  Redox-Sensitive Transcription Factor Nrf2 Regulates Vascular Smooth Muscle Cell Migration and Neointimal Hyperplasia , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[51]  B. K. Park,et al.  The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. , 2013, Biochemical pharmacology.

[52]  L. Rodríguez-Mañas,et al.  Oxidative stress and vascular inflammation in aging. , 2013, Free radical biology & medicine.

[53]  A. Holmgren,et al.  The thioredoxin antioxidant system. , 2014, Free radical biology & medicine.

[54]  M. Cheng,et al.  Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury , 2014, Redox biology.

[55]  M. Doherty,et al.  Endothelial cell oxidative stress in diabetes: a key driver of cardiovascular complications? , 2014, Biochemical Society transactions.

[56]  R. Foresti,et al.  Heme oxygenase-1 as a target for drug discovery. , 2014, Antioxidants & redox signaling.