Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures.

The intricate geometry of cytoskeletal networks and internal membranes causes the space available for diffusion in cytoplasm to be convoluted, thereby affecting macromolecule diffusivity. We present a first systematic computational study of this effect by approximating intracellular structures as mixtures of random overlapping obstacles of various shapes. Effective diffusion coefficients are computed using a fast homogenization technique. It is found that a simple two-parameter power law provides a remarkably accurate description of effective diffusion over the entire range of volume fractions and for any given composition of structures. This universality allows for fast computation of diffusion coefficients, once the obstacle shapes and volume fractions are specified. We demonstrate that the excluded volume effect alone can account for a four-to-sixfold reduction in diffusive transport in cells, relative to diffusion in vitro. The study lays the foundation for an accurate coarse-grain formulation that would account for cytoplasm heterogeneity on a micron scale and binding of tracers to intracellular structures.

[1]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[2]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[3]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[4]  Gary G. Borisy,et al.  Analysis of the Actin–Myosin II System in Fish Epidermal Keratocytes: Mechanism of Cell Body Translocation , 1997, The Journal of cell biology.

[5]  Rudolf Klein,et al.  Self-diffusion of spherical Brownian particles with hard-core interaction , 1982 .

[6]  Feng,et al.  Differences between lattice and continuum percolation transport exponents. , 1985, Physical review letters.

[7]  M. Vacher,et al.  Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. , 2000, Biophysical journal.

[8]  E. Garboczi,et al.  Intrinsic Viscosity and the Polarizability of Particles Having a Wide Range of Shapes , 2007 .

[9]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[10]  Rintoul Precise determination of the void percolation threshold for two distributions of overlapping spheres , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  M. A. Lauffer Theory of diffusion in gels. , 1961, Biophysical journal.

[12]  Alan R. Kerstein,et al.  Critical Properties of the Void Percolation Problem for Spheres , 1984 .

[13]  Shechao Feng,et al.  Percolation on Elastic Networks: New Exponent and Threshold , 1984 .

[14]  I. Tolic-Nørrelykke,et al.  Anomalous diffusion in living yeast cells. , 2004, Physical review letters.

[15]  G. Allaire Homogenization and two-scale convergence , 1992 .

[16]  James C. Schaff,et al.  Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology , 2007, J. Comput. Phys..

[17]  D. Mastronarde,et al.  Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[19]  D. Cooper,et al.  A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[21]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[22]  Harel Weinstein,et al.  Toward realistic modeling of dynamic processes in cell signaling: quantification of macromolecular crowding effects. , 2007, The Journal of chemical physics.

[23]  D. L. Taylor,et al.  The actin-based nanomachine at the leading edge of migrating cells. , 1999, Biophysical journal.

[24]  F. Lanni,et al.  Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm. , 1990, Biophysical journal.

[25]  M. Terasaki,et al.  Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization , 1991, The Journal of cell biology.

[26]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.

[27]  G. Milton The Theory of Composites , 2002 .

[28]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[29]  Graeme W. Milton,et al.  Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics , 2003 .

[30]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[31]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[32]  L. Benguigui,et al.  Experimental Study of the Elastic Properties of a Percolating System , 1984 .

[33]  Irwin Oppenheim,et al.  ON THE THEORY OF CONCENTRATED HARD-SPHERE SUSPENSIONS , 1995 .

[34]  M. Poo,et al.  Diffusional transport of macromolecules in developing nerve processes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  James C. Schaff,et al.  Analysis of nonlinear dynamics on arbitrary geometries with the Virtual Cell. , 2001, Chaos.

[36]  D. Reichman,et al.  Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. , 2004, Physical review letters.

[37]  D. Taylor,et al.  Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[39]  A. Telser Molecular Biology of the Cell, 4th Edition , 2002 .

[40]  J. Quintanilla,et al.  Efficient measurement of the percolation threshold for fully penetrable discs , 2000 .

[41]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[42]  Oppenheim,et al.  Dynamics of hard-sphere suspensions. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[44]  A. Verkman,et al.  Crowding effects on diffusion in solutions and cells. , 2008, Annual review of biophysics.

[45]  D. McLachlan,et al.  An equation for the conductivity of binary mixtures with anisotropic grain structures , 1987 .

[46]  J. van der Gucht,et al.  Brownian particles in supramolecular polymer solutions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  A. Verkman,et al.  Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus , 1997, The Journal of cell biology.

[48]  Y. Yi Void percolation and conduction of overlapping ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.