A general framework for minimizing translation effort: towards a principled combination of translation technologies in computer-aided translation

This paper motivates the need for an homogeneous way of measuring and estimating translation effort (quality) in computeraided translation. It then defines a general framework for the measurement and estimation of translation effort so that translation technologies can be both optimized and combined in a principled manner. In this way, professional translators will benefit from the seamless integration of all the technologies at their disposal when working on a translation job.

[1]  Hermann Ney,et al.  Word-Level Confidence Estimation for Machine Translation , 2007, CL.

[2]  Lucia Specia,et al.  Quality estimation for machine translation: preface , 2013, Machine Translation.

[3]  Philipp Koehn,et al.  Findings of the 2014 Workshop on Statistical Machine Translation , 2014, WMT@ACL.

[4]  Alon Lavie,et al.  Challenges in Predicting Machine Translation Utility for Human Post-Editors , 2012, AMTA.

[5]  Radu Soricut,et al.  TrustRank: Inducing Trust in Automatic Translations via Ranking , 2010, ACL.

[6]  Philipp Koehn,et al.  Margin Infused Relaxed Algorithm for Moses , 2011, Prague Bull. Math. Linguistics.

[7]  Philip Koehn,et al.  Statistical Machine Translation , 2010, EAMT.

[8]  SpeciaLucia,et al.  Machine translation evaluation versus quality estimation , 2010 .

[9]  Radu Soricut,et al.  Combining Quality Prediction and System Selection for Improved Automatic Translation Output , 2012, WMT@NAACL-HLT.

[10]  Ralph Weischedel,et al.  A STUDY OF TRANSLATION ERROR RATE WITH TARGETED HUMAN ANNOTATION , 2005 .

[11]  Hermann Ney,et al.  Word-Level Confidence Estimation for Machine Translation using Phrase-Based Translation Models , 2005, HLT.

[12]  Lucia Specia,et al.  An Investigation on the Effectiveness of Features for Translation Quality Estimation , 2013, MTSUMMIT.

[13]  Harold L. Somers,et al.  Computers and translation : a translator's guide , 2003 .

[14]  Andy Way,et al.  Using Example-Based MT to Support Statistical MT when Translating Homogeneous Data in a Resource-Poor Setting , 2011, EAMT.

[15]  P. Isabelle,et al.  Phrase-based Machine Translation in a Computer-assisted Translation Environment , 2009, MTSUMMIT.

[16]  Pius ten Hacken Computers and translation: a translator's guide , 2004 .

[17]  Alex Waibel,et al.  Augmenting a statistical translation system with a translation memory , 2005, EAMT.

[18]  Radu Soricut,et al.  The SDL Language Weaver Systems in the WMT12 Quality Estimation Shared Task , 2012, WMT@NAACL-HLT.

[19]  Yifan He,et al.  Improving the Post-Editing Experience using Translation Recommendation: A User Study , 2010, AMTA.

[20]  Mikel L. Forcada,et al.  Using any machine translation source for fuzzy-match repair in a computer-aided translation setting , 2014 .

[21]  Anna Samiotou,et al.  Automatic Translation Memory Fuzzy Match Post-Editing: A Step Beyond Traditional TM/MT Integration , 2004, LREC.

[22]  Lucia Specia,et al.  Machine translation evaluation versus quality estimation , 2010, Machine Translation.

[23]  David Chiang,et al.  Hope and Fear for Discriminative Training of Statistical Translation Models , 2012, J. Mach. Learn. Res..

[24]  Alon Lavie,et al.  METEOR-NEXT and the METEOR Paraphrase Tables: Improved Evaluation Support for Five Target Languages , 2010, WMT@ACL.

[25]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[26]  Matthew G. Snover,et al.  A Study of Translation Edit Rate with Targeted Human Annotation , 2006, AMTA.

[27]  Alex Kulesza,et al.  Confidence Estimation for Machine Translation , 2004, COLING.

[28]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[29]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[30]  Yifan He,et al.  Bridging SMT and TM with Translation Recommendation , 2010, ACL.