Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

[1]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[2]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. I. Characterization of nucleation and growth , 1995 .

[3]  D. Tsai,et al.  Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable , 1997 .

[4]  Takashi Nakano,et al.  An approach for recording and readout beyond the diffraction limit with an Sb thin film , 1998 .

[5]  T. Ohta,et al.  Overwritable phase-change optical disk recording , 1998 .

[6]  Takeo Ohta Overview and the future of phase-change optical disk technology , 1999, Optical Data Storage.

[7]  Matthias Wuttig,et al.  Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5 , 1999 .

[8]  Kenji Narumi,et al.  Overview and the Future of Phase-Change Optical Disk Technology. , 2000 .

[9]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[10]  D. Tsai,et al.  Micro-optical nonlinearity of a silver oxide layer , 2001 .

[11]  Matthias Wuttig,et al.  Laser induced crystallization of amorphous Ge2Sb2Te5 films , 2001 .

[12]  T. Ohta,et al.  PHASE-CHANGE OPTICAL MEMORY PROMOTES THE DVD OPTICAL DISK , 2001 .

[13]  Guo-Fu Zhou,et al.  Phase-Change Media for High-Numerical-Aperture and Blue-Wavelength Recording , 2001 .

[14]  D. Tsai,et al.  Study of a Super-Resolution Optical Structure: Polycarbonate/ZnS–SiO2/ZnO/ZnS–SiO2/Ge2Sb2Te5/ZnS–SiO2 , 2003 .

[15]  In-Sik Park,et al.  Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers , 2003 .

[16]  Minoru Kumeda,et al.  Nonvolatile Memory Based on Phase Change in Se–Sb–Te Glass , 2003 .

[17]  Harukazu Miyamoto,et al.  Nanosize fabrication using etching of phase-change recording films , 2004 .

[18]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[19]  Keiji Tanaka,et al.  Electronic Properties of Amorphous and Crystalline Ge2Sb2Te5 Films , 2005 .

[20]  Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy , 2006 .

[21]  Zengbo Wang,et al.  Ultrafast-laser-induced parallel phase-change nanolithography , 2006 .

[22]  Din Ping Tsai,et al.  Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks. , 2006, Optics express.

[23]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[24]  Jen Wu Fang,et al.  Implementation of Practical Super-Resolution Near-Field Structure System Using Commercial Drive , 2006 .

[25]  C. David Wright,et al.  An analytical model for nanoscale electrothermal probe recording on phase-change media , 2006 .

[26]  D. Tsai,et al.  Resolving Nano Scale Recording Bits on Phase-Change Rewritable Optical Disk , 2006 .

[27]  G. S. Murugan,et al.  Chalcogenide glass microspheres; their production, characterization and potential. , 2007, Optics express.

[28]  Erwin R. Meinders,et al.  Phase-Transition Mastering of High-Density Optical Media , 2007 .

[29]  D. Tsai,et al.  Study of Nanoscale Recorded Marks on Phase-Change Recording Layers and the Interactions With Surroundings , 2007, IEEE Transactions on Magnetics.

[30]  Marco N. Petrovich,et al.  Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses , 2007 .

[31]  Matthias Wuttig,et al.  Reversible switching in phase-change materials , 2008 .

[32]  Study of the optical response of phase‐change recording layer with zinc oxide nanostructured thin film , 2008, Journal of microscopy.

[33]  Jingsong Wei,et al.  Laser pulse induced bumps in chalcogenide phase change films , 2008 .

[34]  Application of surface polariton coupling between nano recording marks to optical data storage. , 2008, Optics express.

[35]  C. H. Chu,et al.  Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output , 2009, IEEE Transactions on Magnetics.

[36]  Matthias Wuttig,et al.  Threshold field of phase change memory materials measured using phase change bridge devices , 2009 .

[37]  Tsun Ren Jeng,et al.  Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser , 2009, IEEE Transactions on Magnetics.

[38]  Tsun Ren Jeng,et al.  Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography , 2009 .

[39]  Songlin Feng,et al.  Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material , 2010 .