Hybrid and Aqueous Lithium‐Air Batteries

Lithium-air (Li-air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li-air cells operating with non-aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium-metal anode protected from air by a Li+-ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+-ion conducting “buffer” layer between the lithium-metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li-air batteries and “aqueous” Li-air batteries. The hybrid and aqueous Li-air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li-air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.

[1]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[2]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[3]  Jaeyoung Lee,et al.  Oxygen electrocatalysis in chemical energy conversion and storage technologies , 2013 .

[4]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[5]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[6]  D. A. Bograchev,et al.  Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes , 2014, Journal of Solid State Electrochemistry.

[7]  Yuanhua Lin,et al.  Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents , 2011 .

[8]  Yutao Li,et al.  Optimizing Li+ conductivity in a garnet framework , 2012 .

[9]  Jim P. Zheng,et al.  A High-Rate Rechargeable Li-Air Flow Battery , 2014 .

[10]  M. Morita,et al.  ac imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives , 1992 .

[11]  Guoying Chen,et al.  Combinatorial discovery of bifunctional oxygen reduction — water oxidation electrocatalysts for regenerative fuel cells , 2001 .

[12]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[13]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[14]  J. Wolfenstine,et al.  Reaction of Li0.33La0.57TiO3 with water , 2008, Journal of Materials Science.

[15]  J. Fu Fast Li+ ion conduction in Li2O–(Al2O3 Ga22O3)–TiO2–P2O5 glass–ceramics , 1998 .

[16]  T. Jarvi,et al.  Electrocatalytic corrosion of carbon support in PEMFC cathodes , 2004 .

[17]  K. Abraham,et al.  Long cycle life secondary lithium cells utilizing tetrahydrofuran. Technical report , 1984 .

[18]  T. Jarvi,et al.  Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions , 2004 .

[19]  Liquan Chen,et al.  Perovskite Sr0.95Ce0.05CoO3−δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries , 2012 .

[20]  Tao Zhang,et al.  Stability of Li/Polymer Electrolyte-Ionic Liquid Composite/Lithium Conducting Glass Ceramics in an Aqueous Electrolyte , 2011 .

[21]  A. Manthiram,et al.  O‐ and N‐Doped Carbon Nanowebs as Metal‐Free Catalysts for Hybrid Li‐Air Batteries , 2014 .

[22]  P. Bruce,et al.  Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4 , 1982 .

[23]  Shengbo Zhang,et al.  A Novel Electrolyte Solvent for Rechargeable Lithium and Lithium‐Ion Batteries , 1996 .

[24]  A. Manthiram,et al.  Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts , 2014 .

[25]  Anil V. Virkar,et al.  Mechanism of Catalyst Degradation in Proton Exchange Membrane Fuel Cells , 2007 .

[26]  G. Cui,et al.  Oxygen-enriched carbon material for catalyzing oxygen reduction towards hybrid electrolyte Li-air battery , 2012 .

[27]  Yutao Li,et al.  High Li+ conduction in NASICON-type Li1+xYxZr2−x(PO4)3 at room temperature , 2013 .

[28]  Ludwig Jörissen,et al.  Bifunctional oxygen/air electrodes , 2006 .

[29]  D. B. Hibbert,et al.  A Mechanistic Study of Oxygen Evolution on NiCo2 O 4 I . Formation of Higher Oxides , 1982 .

[30]  John B. Goodenough,et al.  Rechargeable batteries: challenges old and new , 2012, Journal of Solid State Electrochemistry.

[31]  Haoshen Zhou,et al.  Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. , 2009, Journal of the American Chemical Society.

[32]  N. Sammes,et al.  A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .

[33]  Tao Zhang,et al.  A novel high energy density rechargeable lithium/air battery. , 2009, Chemical communications.

[34]  N. Imanishi,et al.  Stability of carbon electrodes for aqueous lithium-air secondary batteries , 2014 .

[35]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[36]  P. He,et al.  The development of a new type of rechargeable batteries based on hybrid electrolytes. , 2010, ChemSusChem.

[37]  E. Cussen,et al.  Structure and ionic conductivity in lithium garnets , 2010 .

[38]  N. Imanishi,et al.  Aqueous Lithium/Air Rechargeable Batteries , 2011 .

[39]  P. He,et al.  Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. , 2011, Chemical communications.

[40]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[41]  Youngsik Kim,et al.  Effects of aqueous electrolytes on the voltage behaviors of rechargeable Li-air batteries , 2012 .

[42]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[43]  M. Morita,et al.  Characteristics of Sulfolane‐Based Electrolytes for Rechargeable Lithium Batteries , 1985 .

[44]  J. Yamaki,et al.  Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells , 2001 .

[45]  J. Gopalakrishnan,et al.  Probing the mobility of lithium in LISICON: Li+/H+ exchange studies in Li2ZnGeO4 and Li2+2xZn1−xGeO4 , 2003 .

[46]  Yugang Sun Lithium ion conducting membranes for lithium-air batteries , 2013 .

[47]  Nobuyuki Imanishi,et al.  Rechargeable aqueous lithium–air batteries with an auxiliary electrode for the oxygen evolution , 2014 .

[48]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[49]  Hansung Kim,et al.  Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. , 2010, Journal of the American Chemical Society.

[50]  K. Kanamura,et al.  Study of the Surface Composition of Highly Smooth Lithium Deposited in Various Carbonate Electrolytes Containing HF , 1997 .

[51]  N. Imanishi,et al.  Electrochemical properties of the polyethylene oxide–Li(CF3SO2)2N and ionic liquid composite electrolyte , 2012 .

[52]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[53]  C. Galven,et al.  Instability of Lithium Garnets against Moisture. Structural Characterization and Dynamics of Li7-xHxLa3Sn2O12 and Li5-xHxLa3Nb2O12 , 2012 .

[54]  Piotr Zelenay,et al.  A class of non-precious metal composite catalysts for fuel cells , 2006, Nature.

[55]  Stability predictions of solid Li-ion conducting membranes in aqueous solutions , 2010 .

[56]  K. Arbi,et al.  Li mobility in triclinic and rhombohedral phases of the Nasicon-type compound LiZr2(PO4)3 as deduced from NMR spectroscopy , 2002 .

[57]  Y. Xing,et al.  Increasing round trip efficiency of hybrid Li–air battery with bifunctional catalysts , 2013 .

[58]  N. Imanishi,et al.  Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries , 2013 .

[59]  Ping He,et al.  The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid ele , 2011 .

[60]  Z. Takehara Future prospects of the lithium metal anode , 1997 .

[61]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[62]  N. Imanishi,et al.  Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal , 2014 .

[63]  T. Leichtweiss,et al.  Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes , 2013 .

[64]  H. Sohn,et al.  Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte , 2008 .

[65]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[66]  Paul C. Johnson,et al.  A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions , 2010 .

[67]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[68]  P. Kohl,et al.  Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery , 2011 .

[69]  Tao Zhang,et al.  Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li , 2011 .

[70]  Haoshen Zhou,et al.  N-Doped Graphene Nanosheet for Li-Air Fuel Cell under Acidic Conditions , 2012 .

[71]  N. Imanishi,et al.  4 V class aqueous hybrid electrochemical capacitor with battery-like capacity , 2012 .

[72]  V. Koch,et al.  The Stability of the Secondary Lithium Electrode in Tetrahydrofuran‐Based Electrolytes , 1978 .

[73]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries I . Li Metal Anodes , 1995 .

[74]  N. Imanishi,et al.  Synthesis of garnet-type Li7 − xLa3Zr2O12 − 1/2x and its stability in aqueous solutions , 2011 .

[75]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[76]  Air‐Metal Hydride Battery Construction and Evaluation , 1995 .

[77]  Tomoki Akita,et al.  Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly , 2006 .

[78]  Zonghai Chen,et al.  Single‐Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithium‐Air Batteries , 2011, Advanced materials.

[79]  A. Manthiram,et al.  Polyprotic acid catholyte for high capacity dual-electrolyte Li-air batteries. , 2012, Physical chemistry chemical physics : PCCP.

[80]  M. Ishikawa,et al.  In situ scanning vibrating electrode technique for lithium metal anodes , 1997 .

[81]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[82]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[83]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[84]  K. Naoi,et al.  Modification of the Lithium Metal Surface by Nonionic Polyether Surfactants: Quartz Crystal Microbalance Studies , 1998 .

[85]  Y. Xing,et al.  A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte , 2012 .

[86]  A. Manthiram,et al.  Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries , 2014 .

[87]  David Harrison,et al.  A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells , 2006 .

[88]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[89]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[90]  W. Lamanna,et al.  The Surface Film Formed on a Lithium Metal Electrode in a New Imide Electrolyte, Lithium Bis(perfluoroethylsulfonylimide) [ LiN ( C 2 F 5 SO 2 ) 2 ] , 1999 .

[91]  Odile Fichet,et al.  Development of a Lithium Air Rechargeable Battery , 2010, ECS Transactions.

[92]  Haoshen Zhou,et al.  A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. , 2010, Chemical communications.

[93]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[94]  J. Besenhard,et al.  Corrosion protection of secondary lithium electrodes in organic electrolytes , 1987 .

[95]  N. Imanishi,et al.  Ta-Doped Li7La3Zr2O12 for Water-Stable Lithium Electrode of Lithium-Air Batteries , 2014 .

[96]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[97]  Haoshen Zhou,et al.  Influence of CO2 on the stability of discharge performance for Li–air batteries with a hybrid electrolyte based on graphene nanosheets , 2014 .

[98]  Yutao Li,et al.  NASICON-type Li1+2xZr2−xCax(PO4)3 with high ionic conductivity at room temperature , 2011 .

[99]  Nobuyuki Imanishi,et al.  Rechargeable lithium–air batteries: characteristics and prospects , 2014 .

[100]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .

[101]  Lithium Electrode Morphology during Cycling in Lithium Cells , 1988 .

[102]  M. Ishikawa,et al.  Improvement of Charge‐Discharge Cycling Efficiency of Li by Low‐Temperature Precycling of Li , 1997 .

[103]  N. Imanishi,et al.  A Composite Polymer Electrolyte Protect Layer between Lithium and Water Stable Ceramics for Aqueous Lithium-Air Batteries , 2013 .

[104]  Mu Pan,et al.  Degradation behavior of membrane–electrode-assembly materials in 10-cell PEMFC stack , 2006 .

[105]  K. Ota,et al.  Consumption Rate of Pt under Potential Cycling , 2007 .

[106]  A. Manthiram,et al.  Imidazole-buffered acidic catholytes for hybrid Li–air batteries with high practical energy density , 2014 .

[107]  A. Manthiram,et al.  Dual-electrolyte lithium–air batteries: influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density , 2013 .

[108]  E. Plichta,et al.  Modeling of Li-Air Batteries with Dual Electrolyte , 2012 .