Structural Basis for Auto-regulation of the Zinc Transporter YiiP

Zinc transporters have crucial roles in cellular zinc homeostatic control. The 2.9-Å resolution structure of the zinc transporter YiiP from Escherichia coli reveals a richly charged dimer interface stabilized by zinc binding. Site-directed fluorescence resonance energy transfer (FRET) measurements and mutation-activity analysis suggest that zinc binding triggers hinge movements of two electrically repulsive cytoplasmic domains pivoting around four salt bridges situated at the juncture of the cytoplasmic and transmembrane domains. These highly conserved salt bridges interlock transmembrane helices at the dimer interface, where they are well positioned to transmit zinc-induced interdomain movements to reorient transmembrane helices, thereby modulating coordination geometry of the active site for zinc transport. The cytoplasmic domain of YiiP is a structural mimic of metal-trafficking proteins and the metal-binding domains of metal-transporting P-type ATPases. The use of this common structural module to regulate metal coordination chemistry may enable a tunable transport activity in response to cytoplasmic metal fluctuations.

[1]  J. Argüello,et al.  Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites , 2008, Proceedings of the National Academy of Sciences.

[2]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[3]  T. O’Halloran,et al.  Structure and chemistry of the copper chaperone proteins. , 2000, Current opinion in chemical biology.

[4]  Yong Y. He,et al.  The Role of Zinc in Selective Neuronal Death After Transient Global Cerebral Ischemia , 1996, Science.

[5]  D. Fu,et al.  Kinetic Study of the Antiport Mechanism of an Escherichia coli Zinc Transporter, ZitB* , 2004, Journal of Biological Chemistry.

[6]  Taiho Kambe,et al.  Identification of the Zn2+ Binding Site and Mode of Operation of a Mammalian Zn2+ Transporter* , 2009, The Journal of Biological Chemistry.

[7]  P. Nordlund,et al.  Crystal Structure of a Divalent Metal Ion Transporter CorA at 2.9 Angstrom Resolution , 2006, Science.

[8]  Christopher Rensing,et al.  FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress , 2004, Archives of Microbiology.

[9]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[10]  B. Vallee,et al.  The biochemical basis of zinc physiology. , 1993, Physiological reviews.

[11]  I. Bertini,et al.  Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. , 2002, Genome research.

[12]  R. Palmiter,et al.  Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. , 1995, The EMBO journal.

[13]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[14]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[15]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[16]  Dennis L. Murphy,et al.  Targeting the murine serotonin transporter: insights into human neurobiology , 2008, Nature Reviews Neuroscience.

[17]  Thomas V. O'Halloran,et al.  Metallochaperones, an Intracellular Shuttle Service for Metal Ions* , 2000, The Journal of Biological Chemistry.

[18]  C. Outten,et al.  Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis , 2001, Science.

[19]  C. Jaroniec,et al.  Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. , 2008, Structure.

[20]  Dietrich H. Nies,et al.  How Cells Control Zinc Homeostasis , 2007, Science.

[21]  D. Cox,et al.  A comparison of the mutation spectra of Menkes disease and Wilson disease , 2003, Human Genetics.

[22]  J. Berg,et al.  The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc , 1996, Science.

[23]  G. Heijne Membrane-protein topology , 2006, Nature Reviews Molecular Cell Biology.

[24]  S. Silver,et al.  Ion efflux systems involved in bacterial metal resistances , 1995, Journal of Industrial Microbiology.

[25]  The second Ca2+-binding domain of the Na+–Ca2+ exchanger is essential for regulation: Crystal structures and mutational analysis , 2007, Proceedings of the National Academy of Sciences.

[26]  R. Cousins,et al.  Mammalian Zinc Transport, Trafficking, and Signals* , 2006, Journal of Biological Chemistry.

[27]  D. Fu,et al.  Oligomeric State of the Escherichia coli Metal Transporter YiiP* , 2004, Journal of Biological Chemistry.

[28]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[29]  D. Fu,et al.  Thermodynamic Studies of the Mechanism of Metal Binding to the Escherichia coli Zinc Transporter YiiP* , 2004, Journal of Biological Chemistry.

[30]  D. Fu,et al.  Selective Metal Binding to a Membrane-embedded Aspartate in the Escherichia coli Metal Transporter YiiP (FieF)* , 2005, Journal of Biological Chemistry.

[31]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[32]  G. Abecasis,et al.  A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2007, Science.

[33]  A. Favier,et al.  In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion , 2006, Journal of Cell Science.

[34]  Thomas V. O'Halloran,et al.  Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors , 2003, Science.

[35]  Xiangxu Kong,et al.  Single-molecule FRET reveals sugar-induced conformational dynamics in LacY , 2007, Proceedings of the National Academy of Sciences.

[36]  O. Nureki,et al.  Crystal structure of the MgtE Mg2+ transporter , 2007, Nature.

[37]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[38]  Marian Rewers,et al.  The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes , 2007, Proceedings of the National Academy of Sciences.

[39]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[40]  S. Sine,et al.  Recent advances in Cys-loop receptor structure and function , 2006, Nature.

[41]  E. Pai,et al.  A structural basis for Mg2+ homeostasis and the CorA translocation cycle , 2006, The EMBO journal.

[42]  C. Wijmenga,et al.  Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes , 2007, Journal of Medical Genetics.

[43]  R J Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2003, Acta crystallographica. Section D, Biological crystallography.

[44]  I. Paulsen,et al.  A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins , 1997, The Journal of Membrane Biology.

[45]  D. Eide,et al.  Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[47]  D. Eide,et al.  The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Fu,et al.  Structure of the Zinc Transporter YiiP , 2007, Science.

[49]  Alexey Bochkarev,et al.  Crystal structure of the CorA Mg2+ transporter , 2005, Nature.