A Probabilistic Approach to Collaborative Multi-Robot Localization

This paper presents a statistical algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot's belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The technique has been implemented and tested using two mobile robots equipped with cameras and laser range-finders for detecting other robots. The results, obtained with the real robots and in series of simulation runs, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization. A further experiment demonstrates that under certain conditions, successful localization is only possible if teams of heterogeneous robots collaborate during localization.

[1]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[2]  Stephen M. Omohundro,et al.  Efficient Algorithms with Neural Network Behavior , 1987, Complex Syst..

[3]  R. Hinkel,et al.  ENVIRONMENT PERCEPTION WITH A LASER RADAR IN A FAST MOVING ROBOT , 1988 .

[4]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[5]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[6]  R. Hinkel,et al.  ENVIRONMENT PERCEPTION WITH A LASER RADAR IN A FAST MOVING ROBOT , 1989 .

[7]  P. S. Maybeck,et al.  The Kalman Filter: An Introduction to Concepts , 1990, Autonomous Robot Vehicles.

[8]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[9]  Maja J. Matarić,et al.  A Distributed Model for Mobile Robot Environment-Learning and Navigation , 1990 .

[10]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[11]  Stephen M. Omohundro,et al.  Bumptrees for Efficient Function, Constraint and Classification Learning , 1990, NIPS.

[12]  Carl F. R. Weiman,et al.  Helpmate autonomous mobile robot nav-igation system , 1991 .

[13]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[14]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[15]  Eric P. Fox Bayesian Statistics 3 , 1991 .

[16]  John J. Leonard,et al.  Directed Sonar Sensing for Mobile Robot Navigation , 1992 .

[17]  Ian Horswill,et al.  Specialization of perceptual processes , 1993 .

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  S. Ito,et al.  Navigation system based on ceiling landmark recognition for autonomous mobile robot , 1993, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics.

[20]  Wolfgang D. Rencken,et al.  Concurrent localisation and map building for mobile robots using ultrasonic sensors , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[21]  S. Engelson Passive map learning and visual place recognition , 1994 .

[22]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[23]  Russell Greiner,et al.  Learning to Select Useful Landmarks , 1994, AAAI.

[24]  Erik Wolfart Position Refinement for a Navigating Robot Using Motion Information Based on Honey Bee Strategies , 1994 .

[25]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Robotics Auton. Syst..

[26]  Ryo Kurazume,et al.  Cooperative positioning with multiple robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[27]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[28]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[29]  Hobart R. Everett,et al.  Real-world issues in warehouse navigation , 1995, Other Conferences.

[30]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[31]  Johann Borenstein Control and kinematic design of multi-degree-of freedom mobile robots with compliant linkage , 1995, IEEE Trans. Robotics Autom..

[32]  Shlomo Zilberstein,et al.  Approximate Reasoning Using Anytime Algorithms , 1995 .

[33]  Gregor Schöner,et al.  Neural dynamics parametrically controlled by image correlations organize robot navigation , 1996, SNN Symposium on Neural Networks.

[34]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[35]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[36]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[37]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[38]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[39]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[40]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[41]  Gregor Schöner,et al.  Dynamics parametrically controlled by image correlations organize robot navigation , 1996, Biological Cybernetics.

[42]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[43]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.

[44]  Andrew B. Kahng,et al.  Cooperative Mobile Robotics: Antecedents and Directions , 1997, Auton. Robots.

[45]  Geoffrey E. Hinton,et al.  A Mobile Robot That Learns Its Place , 1997, Neural Computation.

[46]  Leslie Pack Kaelbling,et al.  Learning Topological Maps from Weak Odometric Information , 1997, IJCAI 1997.

[47]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[48]  Gregory Dudek,et al.  Multi-Robot Exploration of an Unknown Environment, Efficiently Reducing the Odometry Error , 1997, IJCAI.

[49]  Andrew W. Moore,et al.  Efficient Locally Weighted Polynomial Regression Predictions , 1997, ICML.

[50]  Wolfram Burgard,et al.  Active Mobile Robot Localization , 1997, IJCAI.

[51]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[52]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[53]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[54]  Cooperative multiagent robotic systems , 1998 .

[55]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[56]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[57]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[58]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[59]  Daphne Koller,et al.  Using Learning for Approximation in Stochastic Processes , 1998, ICML.

[60]  John Langford,et al.  Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes , 1999, ICML.

[61]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[62]  Bernhard Nebel,et al.  Fast, accurate, and robust self-localization in polygonal environments , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[63]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[64]  Bernhard Nebel,et al.  Fast, Accurate, and Robust Self-Localization in the RoboCup Environment , 1999, RoboCup.

[65]  Kurt Konolige,et al.  Markov Localization using Correlation , 1999, IJCAI.

[66]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[67]  Xavier Boyen,et al.  Exploiting the Architecture of Dynamic Systems , 1999, AAAI/IAAI.

[68]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[69]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[70]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[71]  Wolfram Burgard,et al.  Robust visualization of navigation experiments with mobile robots over the Internet , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).