The basal ganglia: An overview of circuits and function

[1]  A. Graybiel,et al.  Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  J. Deniau,et al.  Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior , 2004, Experimental Brain Research.

[3]  C. McIntyre,et al.  Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. , 2002, Journal of neurophysiology.

[4]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[5]  S. Sealfon,et al.  Dopamine receptors: from structure to behavior , 2000, Trends in Neurosciences.

[6]  J. Lynch,et al.  Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. , 2003, Journal of neurophysiology.

[7]  T. Powell,et al.  The cortico-striate projection in the monkey. , 1970, Brain : a journal of neurology.

[8]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[9]  J. Leckman A Cursing Brain? The Histories of Tourette Syndrome , 2001 .

[10]  E. Vaadia,et al.  Firing Patterns and Correlations of Spontaneous Discharge of Pallidal Neurons in the Normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet Model of Parkinsonism , 2000, The Journal of Neuroscience.

[11]  X. Breakefield,et al.  TorsinA Movement at Many Levels , 2001, Neuron.

[12]  Naoyuki Matsumoto,et al.  Tonically Active Neurons in the Primate Caudate Nucleus and Putamen Differentially Encode Instructed Motivational Outcomes of Action , 2004, The Journal of Neuroscience.

[13]  C. McIntyre,et al.  Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. , 2004, Journal of neurophysiology.

[14]  W. Schultz Predictive reward signal of dopamine neurons. , 1998, Journal of neurophysiology.

[15]  A. Graybiel,et al.  Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis , 2000, Trends in Neurosciences.

[16]  S. Gill,et al.  Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease , 2005, Neuroreport.

[17]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[18]  S Fahn,et al.  Tolcapone , 1998, Neurology.

[19]  C. Marsden,et al.  Classification of dystonia. , 1998, Advances in neurology.

[20]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[21]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[22]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[23]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[24]  E. Evarts,et al.  Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  P. Stanzione,et al.  Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease , 2005, Neuroreport.

[26]  A. Parent,et al.  Anatomical aspects of information processing in primate basal ganglia , 1993, Trends in Neurosciences.

[27]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[28]  A. Covalin,et al.  Deep Brain Stimulation for Obesity Control: Analyzing Stimulation Parameters to Modulate Energy Expenditure , 2005, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005..

[29]  J. Deniau,et al.  The nigro-tectal pathway. An electrophysiological reinvestigation in the rat , 1981, Brain Research.

[30]  P. Strick,et al.  Basal-ganglia 'projections' to the prefrontal cortex of the primate. , 2002, Cerebral cortex.

[31]  A. Nambu,et al.  Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway , 2002, Neuroscience Research.

[32]  Xiaoqin Wang,et al.  Remodelling of hand representation in adult cortex determined by timing of tactile stimulation , 1995, Nature.

[33]  Martin Lévesque,et al.  Organization of the basal ganglia: the importance of axonal collateralization , 2000, Trends in Neurosciences.

[34]  M. Jenike Neurosurgical treatment of obsessive-compulsive disorder , 1998, British Journal of Psychiatry.

[35]  A. Strafella,et al.  Bilateral globus pallidus stimulation for Huntington's disease , 2004, Annals of neurology.

[36]  J. Obeso,et al.  Pathophysiology of the basal ganglia in Parkinson's disease , 2000, Trends in Neurosciences.

[37]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[38]  J. Deniau,et al.  Cortical inputs to the subthalamus: intracellular analysis , 1981, Brain Research.

[39]  J. Mink The Basal Ganglia and involuntary movements: impaired inhibition of competing motor patterns. , 2003, Archives of neurology.

[40]  L. Kempe Handbook of Physiology. Section I. The Nervous System , 1982 .

[41]  J. D. Parkes,et al.  "ON-OFF" EFFECTS IN PATIENTS WITH PARKINSON'S DISEASE ON CHRONIC LEVODOPA THERAPY , 1976, The Lancet.

[42]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[43]  Y. Agid,et al.  Tourette’s syndrome and deep brain stimulation , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[44]  S. Taylor,et al.  Deep brain stimulation for refractory obsessive-compulsive disorder , 2005, Biological Psychiatry.

[45]  P. Strick,et al.  Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. , 1994, Science.

[46]  V. Visser-Vandewalle,et al.  Surgery in Tourette syndrome , 2004, Movement disorders : official journal of the Movement Disorder Society.

[47]  B. Picconi,et al.  Role of tonically-active neurons in the control of striatal function: Cellular mechanisms and behavioral correlates , 2001, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[48]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[49]  G. Deuschl,et al.  Deep brain stimulation: Postoperative issues , 2006, Movement disorders : official journal of the Movement Disorder Society.

[50]  B Mazoyer,et al.  Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. , 1989, Brain : a journal of neurology.

[51]  Klaus Mewes,et al.  Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus , 1999, Annals of neurology.

[52]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[53]  A. Oliviero,et al.  Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease , 2001, The Journal of Neuroscience.

[54]  J. Kuratsu,et al.  Functional anatomy of the basal ganglia in X‐linked recessive dystonia‐parkinsonism , 2005, Annals of neurology.

[55]  R. Wurtz,et al.  The Neurobiology of Saccadic Eye Movements , 1989 .

[56]  M. Hallett,et al.  Changes in brain anatomy in focal hand dystonia , 2004, Annals of neurology.

[57]  K. Black,et al.  MPTP induces dystonia and parkinsonism , 1997, Neurology.

[58]  W. Schultz The Reward Signal of Midbrain Dopamine Neurons. , 1999, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[59]  M. Glickstein,et al.  Paradoxical movement in Parkinson's disease , 1991, Trends in Neurosciences.

[60]  M. Delong,et al.  Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. , 1999, Journal of neurophysiology.

[61]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  P. Jenner Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson's disease , 2003, Current opinion in neurology.

[63]  C. Marsden,et al.  The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. , 1994, Brain : a journal of neurology.

[64]  J. Mink,et al.  Neurobiology of basal ganglia and Tourette syndrome: basal ganglia circuits and thalamocortical outputs. , 2006, Advances in neurology.

[65]  P. Strick,et al.  The temporal lobe is a target of output from the basal ganglia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. Akert,et al.  Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey , 1978, Experimental Brain Research.

[67]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[68]  P. Strick,et al.  The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1 , 1999, The Journal of Neuroscience.

[69]  S. Rauch,et al.  Neurosurgery for intractable obsessive-compulsive disorder and depression: critical issues. , 2003, Neurosurgery clinics of North America.

[70]  Sonja Grün,et al.  Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation , 2000, Journal of Physiology-Paris.

[71]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  K. Saitoh,et al.  Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction , 2003, Neuroscience.

[73]  E. Garcia-Rill,et al.  Connections of the mesencephalic locomotor region (MLR) I. Substantia nigra afferents , 1983, Brain Research Bulletin.

[74]  Peter Herscovitch,et al.  The Functional Neuroanatomy of Tourette's Syndrome: An FDG PET Study III: Functional Coupling of Regional Cerebral Metabolic Rates , 2002, Neuropsychopharmacology.

[75]  A. Benabid Deep brain stimulation for Parkinson’s disease , 2003, Current Opinion in Neurobiology.

[76]  Hans Forssberg,et al.  Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons , 2000, Nature Neuroscience.

[77]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[78]  T. Wichmann,et al.  Neuronal activity in the primate substantia nigra pars reticulata during the performance of simple and memory-guided elbow movements. , 2004, Journal of neurophysiology.

[79]  G. Chevalier,et al.  Evidence for a GABAergic inhibitory nigrotectal pathway in the rat , 1981, Neuroscience Letters.

[80]  J. Penney,et al.  The functional anatomy of disorders of the basal ganglia , 1995, Trends in Neurosciences.

[81]  M. A. Basso,et al.  Neuronal Activity in Substantia Nigra Pars Reticulata during Target Selection , 2002, The Journal of Neuroscience.

[82]  A. Young,et al.  A polymorphic DNA marker genetically linked to Huntington's disease , 1983, Nature.

[83]  Warren M. Grill,et al.  Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation , 2001 .

[84]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[85]  P. Glimcher,et al.  Eye position and memory saccade related responses in substantia nigra pars reticulata , 2004, Experimental Brain Research.

[86]  A. Kelley Memory and Addiction Shared Neural Circuitry and Molecular Mechanisms , 2004, Neuron.