miR-126 identifies a quiescent and chemo-resistant human B-ALL cell subset that correlates with minimal residual disease

[1]  I. Macaulay,et al.  Chemotherapy induces canalization of cell state in childhood B-cell precursor acute lymphoblastic leukemia , 2021, Nature Cancer.

[2]  Benjamin J. Raphael,et al.  Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. , 2019, Blood.

[3]  Yate-Ching Yuan,et al.  Bone Marrow Niche Trafficking of miR-126 Controls Self-Renewal of Leukemia Stem Cells in Chronic Myelogenous Leukemia , 2018, Nature Medicine.

[4]  William A. Flavahan,et al.  Epigenetic plasticity and the hallmarks of cancer , 2017, Science.

[5]  A. Tanay,et al.  Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome , 2017, Proceedings of the National Academy of Sciences.

[6]  W. Hiddemann,et al.  Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia , 2016, Cancer cell.

[7]  M. Loh,et al.  Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia , 2016, Proceedings of the National Academy of Sciences.

[8]  J. Dick,et al.  miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia. , 2016, Cancer cell.

[9]  Davide Cittaro,et al.  Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing , 2016, Cell.

[10]  Gary D Bader,et al.  miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells , 2016, Cancer cell.

[11]  Gary D Bader,et al.  miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells , 2016, Cancer cell.

[12]  Jiwang Zhang,et al.  Overexpression and knockout of miR-126 both promote leukemogenesis. , 2015, Blood.

[13]  Alberto Orfao,et al.  Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. , 2015, Blood.

[14]  Jing Ma,et al.  Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia , 2015, Nature Communications.

[15]  Andrew J Gentles,et al.  Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages , 2015, Proceedings of the National Academy of Sciences.

[16]  S. Armstrong,et al.  Mutations in epigenetic regulators including SETD2 are gained during relapse in pediatric acute lymphoblastic leukemia , 2014, Nature Communications.

[17]  A. Krešo,et al.  Evolution of the cancer stem cell model. , 2014, Cell stem cell.

[18]  Jian-Bing Fan,et al.  The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment , 2013, Nature Immunology.

[19]  W. Evans,et al.  Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia , 2013, Nature Genetics.

[20]  Gary D Bader,et al.  Attenuation of miR-126 Activity Expands HSC In Vivo without Exhaustion , 2012, Cell stem cell.

[21]  M. Minden,et al.  Outcomes of adult patients with relapsed acute lymphoblastic leukemia following frontline treatment with a pediatric regimen. , 2012, Leukemia research.

[22]  Kenneth H. Buetow,et al.  CREBBP mutations in relapsed acute lymphoblastic leukaemia , 2011, Nature.

[23]  J. Downing,et al.  Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells , 2011, Nature.

[24]  Alessandra Biffi,et al.  Identification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy , 2010, Science Translational Medicine.

[25]  H. Lodish,et al.  Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. , 2010, Biochemical and biophysical research communications.

[26]  Ji Wan,et al.  Structure and activity of putative intronic miRNA promoters. , 2010, RNA.

[27]  James R. Downing,et al.  Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia , 2008, Science.

[28]  M. Tallman,et al.  Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. , 2005, Blood.

[29]  D. Fabbro,et al.  Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia , 2004, Nature Genetics.