Micro and nano patterning of carbon electrodes for bioMEMS

Carbon based bioMEMS are an emerging class of miniaturized biomedical devices. Due to the numerous advantages such as scalable manufacturing processes, inexpensive and readily available precursor polymer materials, tunable surface properties and biocompatibility, carbon has become a preferred material for a wide variety of future biosensing applications. In this article, we review fabrication methodologies for carbon-MEMS (CMEMS) and carbon-NEMS (CNEMS) devices and strategies for their surface modification for biocompatibility and for biosensing. We also discuss the underlying graphitic and glassy microstructures of carbon since the biocompatibility of carbon and its microstructures are intertwined. We conclude by exploring various CMEMS and CNEMS devices that have been successfully fabricated.

[1]  K. Kawamura,et al.  Structure of Glassy Carbon , 1971, Nature.

[2]  Marc Madou,et al.  A new approach to gas sensing with nanotechnology , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  W. V. KOTLENSKY,et al.  Tensile Properties of Glassy Carbon to 2,900° C , 1965, Nature.

[4]  R. Kaushik,et al.  Poly-ϵ-caprolactone microspheres and nanospheres: an overview , 2004 .

[5]  M. Porter,et al.  Electrochemical oxidation of amine-containing compounds. A route to the surface modification of glassy carbon electrodes , 1994 .

[6]  David J. Fischer,et al.  Pyrolyzed Photoresist Carbon Electrodes for Microchip Electrophoresis with Dual‐Electrode Amperometric Detection , 2005 .

[7]  David A. Chang-Yen,et al.  Large-area, high-aspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices , 2008 .

[8]  Kwang-Cheol Lee,et al.  Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis , 2008 .

[9]  R. Kostecki,et al.  Electrochemical Analysis of Carbon Interdigitated Microelectrodes , 1999 .

[10]  Wanjun Wang,et al.  Using megasonic development of SU-8 to yield ultra-high aspect ratio microstructures with UV lithography , 2004 .

[11]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[12]  Marc J Madou,et al.  The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. , 2010, Lab on a chip.

[13]  R. McCreery,et al.  Laser microfabrication and activation of graphite and glassy carbon electrodes , 1990 .

[14]  Lauro T. Kubota,et al.  Biosensors based on gold nanostructures , 2011 .

[15]  J. Pinson,et al.  Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbon‐Epoxy Composites , 1990 .

[16]  R. Drew,et al.  Wettability and spreading kinetics of molten aluminum on copper-coated ceramics , 2006 .

[17]  Kiyoshi Kawamura,et al.  Polymeric Carbons: Carbon Fibre, Glass and Char , 1976 .

[18]  George M. Whitesides,et al.  Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors , 1997 .

[19]  R. Kostecki,et al.  Fabrication of Interdigitated Carbon Structures by Laser Pyrolysis of Photoresist , 2002 .

[20]  B. Liang,et al.  Oxygen Functionalization of Multiwall Carbon Nanotubes by Microwave-Excited Surface-Wave Plasma Treatment , 2009 .

[21]  R. Kaushik,et al.  Poly-epsilon-caprolactone microspheres and nanospheres: an overview. , 2004, International journal of pharmaceutics.

[22]  Noo Li Jeon,et al.  Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. , 2007, Lab on a chip.

[23]  Xiangyun Song,et al.  Development of a carbon-based lithium microbattery , 1999 .

[24]  David Paul Steenson,et al.  Microfabrication of channels using an embedded mask in negative resist , 2001 .

[25]  N. Brown,et al.  A study of the topography of a glassy carbon surface following low-power radio-frequency oxygen plasma treatment , 1998 .

[26]  Julian L. Roberts,et al.  Electrochemistry for Chemists , 1995 .

[27]  R. McCreery,et al.  Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. , 2003, Analytical chemistry.

[28]  Bharat Bhushan,et al.  Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications , 2005 .

[29]  Sheela Berchmans,et al.  Surface modification of glassy carbon by riboflavin , 1995 .

[30]  J. Louis,et al.  Fibrous carbon implants for the maintenance of bone volume after tooth avulsion: first clinical results. , 1990, Biomaterials.

[31]  George M. Whitesides,et al.  Fabrication and Characterization of Glassy Carbon MEMS , 1997 .

[32]  Gopal S. Upadhyaya,et al.  Material Science and Engineering , 2007 .

[33]  A. Downard Electrochemically Assisted Covalent Modification of Carbon Electrodes , 2000 .

[34]  Tsukasa Shigemitsu,et al.  Electrical properties of glassy-carbon electrodes , 2006, Medical and Biological Engineering and Computing.

[35]  L. Bačáková,et al.  In vitro and in vivo studies on biocompatibility of carbon fibres , 2010, Journal of materials science. Materials in medicine.

[36]  Debabrata Basu,et al.  Prospects of microwave processing: An overview , 2008 .

[37]  Chien-Chung Fu,et al.  Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations , 2007 .

[38]  F. Rouais,et al.  Biocompatibility of carbon-carbon materials: in vivo study of their erosion using 14carbon labelled samples. , 1988, Biomaterials.

[39]  M. Madou,et al.  A novel method for the fabrication of high-aspect ratio C-MEMS structures , 2005, Journal of Microelectromechanical Systems.

[40]  Marc J Madou,et al.  A novel approach to dielectrophoresis using carbon electrodes , 2011, Electrophoresis.

[41]  T. Ramakrishnappa,et al.  Microwave-assisted functionalization of glassy carbon spheres: electrochemical and mechanistic studies , 2010 .

[42]  Tielin Shi,et al.  High‐throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three‐dimensional microelectrode array , 2011, Electrophoresis.

[43]  J. Pinson,et al.  Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts , 1997 .

[44]  C. Sharma,et al.  Multiscale micro-patterned polymeric and carbon substrates derived from buckled photoresist films: fabrication and cytocompatibility , 2012, Journal of Materials Science.

[45]  Paul M. Dentinger,et al.  High aspect ratio patterning with a proximity ultraviolet source , 2002 .

[46]  M. Madou,et al.  Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms. , 2012, ACS applied materials & interfaces.

[47]  Jeong-Il Heo,et al.  Carbon Interdigitated Array Nanoelectrodes for Electrochemical Applications , 2011 .

[48]  U. Vohrer,et al.  Plasma functionalization of multiwalled carbon nanotube bucky papers and the effect on properties of melt-mixed composites with polycarbonate. , 2009, Macromolecular rapid communications.

[49]  L. Bordenave,et al.  Biocompatibility of carbon-carbon materials: blood tolerability. , 1989, Biomaterials.

[50]  N. Lawrence,et al.  Homogeneous chemical derivatisation of carbon particles: a novel method for funtionalising carbon surfaces. , 2002, The Analyst.

[51]  Tsukasa Akasaka,et al.  Oxidation of multiwalled carbon nanotubes by nitric acid , 2005 .

[52]  M. Blazewicz Carbon materials in the treatment of soft and hard tissue injuries. , 2001, European cells & materials.

[53]  M. F. Lorenzo de Mele,et al.  Cytotoxicity of copper ions released from metal , 2007, Biological Trace Element Research.

[54]  Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis , 2006 .

[55]  M. Madou Fundamentals of microfabrication , 1997 .

[56]  Hong Yang,et al.  Nanopillar Arrays of Glassy Carbon by Anodic Aluminum Oxide Nanoporous Templates , 2003 .

[57]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[58]  H. Toghiani,et al.  Nitric acid oxidation of vapor grown carbon nanofibers , 2004 .

[59]  Ashutosh Sharma,et al.  Resorcinol-formaldehyde based carbon nanospheres by electrospraying , 2009 .

[60]  R. Zaouk Carbon MEMS from the nanoscale to the macroscale: Novel fabrication techniques and applications in electrochemistry , 2008 .

[61]  S. Konishi,et al.  Investigation of Pyrolyzed Polyimide Thin Film as MEMS Material , 2005 .

[62]  Peter J. F. Harris,et al.  Fullerene-related structure of commercial glassy carbons , 2004 .

[63]  Yong Qing Fu,et al.  Diamond and diamond-like carbon MEMS , 2007 .

[64]  A. Mata,et al.  Fabrication of multi-layer SU-8 microstructures , 2006 .

[65]  George M. Whitesides,et al.  New Approaches to Nanofabrication: Molding, Printing, and Other Techniques , 2005 .

[66]  Jun‐Jie Zhu,et al.  An electrochemical biosensor constructed by nanosized silver particles doped sol–gel film , 2004 .

[67]  J. Pinson,et al.  Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[68]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[69]  D. Chung,et al.  Three-dimensional microstructuring of carbon by thermoplastic spacer evaporation during pyrolysis , 2008 .

[70]  Marc Madou,et al.  Photoresist‐Derived Carbon for Microelectromechanical Systems and Electrochemical Applications , 2000 .

[71]  Chong H. Ahn,et al.  A tapered hollow metallic microneedle array using backside exposure of SU-8 , 2004 .

[72]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[73]  Philip Huie,et al.  Building thick photoresist structures from the bottom up , 2003 .

[74]  Robert Kostecki,et al.  Surface studies of carbon films from pyrolyzed photoresist , 2001 .

[75]  P. Tran,et al.  Carbon nanofibers and carbon nanotubes in regenerative medicine. , 2009, Advanced drug delivery reviews.

[76]  Chunlei Wang,et al.  Carbon as a MEMS material: micro and nanofabrication of pyrolysed photoresist carbon , 2008, Int. J. Manuf. Technol. Manag..

[77]  Ashutosh Sharma,et al.  Carbon microelectromechanical systems as a substratum for cell growth , 2008, Biomedical materials.