THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Lyα absorption from the spectra of a sample of ∼150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z ≈ 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg−2 in this redshift range, with a goal of 20 out of 40 targets deg−2 allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g ⩽ 22.0 or r ⩽ 21.85. While detection of the BAO signature in the distribution of Lyα absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg−2, for which the selection efficiency is just over 50% (∼10 z > 2.20 quasars deg−2). This “CORE” subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg−2, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations based on these data, and we analyze the spectra obtained during the first year. During this year, 11,263 new z > 2.20 quasars were spectroscopically confirmed by BOSS, roughly double the number of previously known quasars with z > 2.20. Our current algorithms select an average of 15 z > 2.20 quasars deg−2 from 40 targets deg−2 using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS QTS.

[1]  J. Conway,et al.  LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters , 2011, 1107.1606.

[2]  Adam D. Myers,et al.  PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL , 2011, 1105.3975.

[3]  Adam D. Myers,et al.  The Lyman-α forest in three dimensions: measurements of large scale flux correlations from BOSS 1st-year data , 2011, 1104.5244.

[4]  Adam D. Myers,et al.  A SIMPLE LIKELIHOOD METHOD FOR QUASAR TARGET SELECTION , 2011, 1104.4995.

[5]  D. Koo,et al.  VARIABILITY AND MULTIWAVELENGTH-DETECTED ACTIVE GALACTIC NUCLEI IN THE GOODS FIELDS , 2011, 1102.3653.

[6]  J. Richards,et al.  ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.

[7]  N. Ross,et al.  NEAR-INFRARED PHOTOMETRIC PROPERTIES OF 130,000 QUASARS: AN SDSS–UKIDSS-MATCHED CATALOG , 2010, 1012.4187.

[8]  B. A. Weaver,et al.  Variability selected high-redshift quasars on SDSS Stripe 82 , 2010, 1012.2391.

[9]  A. Myers,et al.  THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSO QUASAR TARGETING CATALOG , 2010, 1011.6392.

[10]  Patrick Petitjean,et al.  Artificial neural networks for quasar selection and photometric redshift determination , 2010 .

[11]  A. C. Becker,et al.  QUASAR SELECTION BASED ON PHOTOMETRIC VARIABILITY , 2010, 1009.2081.

[12]  Nathaniel R. Butler,et al.  OPTIMAL TIME-SERIES SELECTION OF QUASARS , 2010, 1008.3143.

[13]  Andrei Linde,et al.  Measure Problem for Eternal and Non-Eternal Inflation , 2010, 1006.2170.

[14]  J. Prochaska,et al.  GALEX FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS , 2010, 1004.3347.

[15]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[16]  B. Ménard,et al.  Gravitational lensing as signal and noise in Lyman-{alpha} forest measurements , 2010, 1004.1165.

[17]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[18]  Katrin Heitmann,et al.  PARTICLE MESH SIMULATIONS OF THE Lyα FOREST AND THE SIGNATURE OF BARYON ACOUSTIC OSCILLATIONS IN THE INTERGALACTIC MEDIUM , 2009, 0911.5341.

[19]  L. Verde,et al.  The dark side of curvature , 2009, 0910.0252.

[20]  S. Djorgovski,et al.  BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z ∼ 3–4 , 2009, 0908.3907.

[21]  M. Norman,et al.  Baryon acoustic oscillations in the Lyman alpha forest , 2009, 0908.0964.

[22]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[23]  Shirley Ho,et al.  The acoustic peak in the Lyman alpha forest , 2009, 0906.2414.

[24]  Sam T. Roweis,et al.  Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations , 2009, 0905.2979.

[25]  D. Eisenstein,et al.  The Baryon Oscillation Spectroscopic Survey: Precision measurements of the absolute cosmic distance scale , 2009, 0902.4680.

[26]  D. Croton A simple model to link the properties of quasars to the properties of dark matter haloes out to high redshift , 2009, 0901.4104.

[27]  S. T. Hodgkin,et al.  The UKIRT wide field camera ZYJHK photometric system: calibration from 2MASS , 2008, 0812.3081.

[28]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[29]  Alexander G. Gray,et al.  EIGHT-DIMENSIONAL MID-INFRARED/OPTICAL BAYESIAN QUASAR SELECTION , 2008, 0810.3567.

[30]  A. M. Swinbank,et al.  A pilot survey for KX QSOs in the UKIDSS Ultra Deep Survey Field , 2008, 0806.2538.

[31]  Cambridge,et al.  Luminous K-band Selected Quasars from UKIDSS , 2008, 0802.3650.

[32]  R. Nichol,et al.  SDSS-III: The Baryon Oscillation Spectroscopic Survey (BOSS) , 2007 .

[33]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[34]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[35]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[36]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[37]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[38]  D. Eisenstein,et al.  Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-αforest , 2006, astro-ph/0607122.

[39]  S. Dye,et al.  The WFCAM Science Archive , 2006, 0711.3593.

[40]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[41]  Princeton,et al.  The Field of Streams: Sagittarius and Its Siblings , 2006, astro-ph/0605025.

[42]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[43]  M. Irwin,et al.  New members in the upper scorpius association from the UKIRT infrared deep sky survey early data release , 2006, astro-ph/0609532.

[44]  J. Brinkmann,et al.  A Spectroscopic Survey of Faint Quasars in the SDSS Deep Stripe. I. Preliminary Results from the Co-added Catalog , 2006, astro-ph/0602569.

[45]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[46]  Cambridge,et al.  The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours , 2006, astro-ph/0601592.

[47]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[48]  Alexander G. Gray,et al.  First Measurement of the Clustering Evolution of Photometrically Classified Quasars , 2005, astro-ph/0510371.

[49]  Michael J. Kurtz,et al.  Hectospec, the MMT’s 300 Optical Fiber‐Fed Spectrograph , 2005, astro-ph/0508554.

[50]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[51]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[52]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[53]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[54]  Porto,et al.  The 2dF QSO Redshift Survey - XIV. Structure and evolution from the two-point correlation function , 2004, astro-ph/0409314.

[55]  Alexander G. Gray,et al.  EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.

[56]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[57]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[58]  R. Nichol,et al.  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[59]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[60]  K. Glazebrook,et al.  Probing Dark Energy Using Baryonic Oscillations in the Galaxy Power Spectrum as a Cosmological Ruler , 2003, astro-ph/0301632.

[61]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[62]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[63]  R. McMahon,et al.  Reddening-independent quasar selection from a wide-field optical and near-infrared imaging survey , 2002, astro-ph/0209398.

[64]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[65]  Technology,et al.  A small-area faint KX redshift survey for QSOs in the ESO Imaging Survey Chandra Deep Field South , 2001, astro-ph/0107451.

[66]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[67]  F. M. Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001, astro-ph/0105535.

[68]  James E. Gunn,et al.  SDSS Imaging Pipelines , 2001, SPIE Astronomical Telescopes + Instrumentation.

[69]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[70]  P. Hewett,et al.  The KX method for producing K-band flux-limited samples of quasars , 1999, astro-ph/9911064.

[71]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[72]  Xiaohui Fan,et al.  Simulation of Stellar Objects in SDSS Color Space , 1999, astro-ph/9902063.

[73]  J. Peacock,et al.  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[74]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[75]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[76]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[77]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[78]  R. Wyse,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1996, astro-ph/9612025.

[79]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[80]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[81]  James E. Gunn,et al.  Spectrscopic CCD Surveys for Quasars at Large Redshift.IV.Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission , 1995 .

[82]  M. Irwin,et al.  Sagittarius: the nearest dwarf galaxy , 1995, astro-ph/9506071.

[83]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[84]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[85]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[86]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[87]  P. Osmer Evidence for a decrease in the space density of quasars at Z more than about 3.5 , 1982 .

[88]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[89]  A. Myers,et al.  The 2 dF-SDSS LRG and QSO Survey : the spectroscopic QSO catalogue , 2008 .

[90]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[91]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[92]  W. Charemza,et al.  Conclusions and future prospects , 1989 .

[93]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .