Efficient dyad-based organic solar cells with a highly crystalline donor group.

A novel oligo(p-phenylenevinylene)(OPV)-fullerene dyad, with strong intermolecular pi-pi interactions between the donor groups, led to improvements in the fill factor and power conversion efficiency of dyad-based solar cells of up to 0.44 and 1.28%, respectively, which are the highest values reported for dyad-based solar cells to date.

[1]  Kazuhito Hashimoto,et al.  Buffer layer formation in organic photovoltaic cells by self-organization of poly(dimethylsiloxane)s , 2009 .

[2]  K. Hashimoto,et al.  Highly uniaxial orientation in oligo(p-phenylenevinylene) films induced during wet-coating process. , 2009, Journal of the American Chemical Society.

[3]  Dongmei Cui,et al.  Supplementary Material (ESI) for Chemical Communications , 2009 .

[4]  K. Hashimoto,et al.  Charge Separation Interfaces in Polymer Photovoltaic Devices Hybridized with ZnO Nanorod Arrays , 2008 .

[5]  K. Hashimoto,et al.  The effect of crystallinity in donor groups on the performance of photovoltaic devices based on an oligothiophene–fullerene dyad , 2008, Nanotechnology.

[6]  Paul H. Wöbkenberg,et al.  High mobility n-channel organic field-effect transistors based on soluble C-60 and C-70 fullerene derivatives , 2008 .

[7]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[8]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[9]  Kazuhito Hashimoto,et al.  Supramolecular formation of fibrous nanostructure in donor–acceptor dyad film , 2007 .

[10]  Stéphane Guillerez,et al.  Poly(3‐hexylthiophene) Fibers for Photovoltaic Applications , 2007 .

[11]  Niyazi Serdar Sariciftci,et al.  Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk‐Heterojunction Solar Cells , 2007 .

[12]  Kazuhito Hashimoto,et al.  Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices , 2007 .

[13]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[14]  J. Nunzi,et al.  High Molecular Weights, Polydispersities, and Annealing Temperatures in the Optimization of Bulk‐Heterojunction Photovoltaic Cells Based on Poly(3‐hexylthiophene) or Poly(3‐butylthiophene) , 2006 .

[15]  K. Hashimoto,et al.  Design and Synthesis of TiO2 Nanorod Assemblies and Their Application for Photovoltaic Devices , 2006 .

[16]  Valentin D. Mihailetchi,et al.  Origin of the enhanced performance in poly"3-hexylthiophene…: †6,6‡-phenyl C 61 -butyric acid methyl ester solar cells upon slow drying of the active layer , 2006 .

[17]  J. D’Haen,et al.  Tuning the Dimensions of C60‐Based Needlelike Crystals in Blended Thin Films , 2006 .

[18]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[19]  David L Carroll,et al.  Meso-structure formation for enhanced organic photovoltaic cells. , 2005, Organic letters.

[20]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[21]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[22]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[23]  J. Roncali Linear pi-conjugated systems derivatized with C60-fullerene as molecular heterojunctions for organic photovoltaics. , 2005, Chemical Society reviews.

[24]  J. Loos,et al.  Influence of the Relative Humidity on the Performance of Polymer/TiO2 Photovoltaic Cells , 2005 .

[25]  Nazario Martin,et al.  Materials for organic solar cells: the C60/pi-conjugated oligomer approach. , 2005, Chemical Society reviews.

[26]  J. Nierengarten,et al.  Chemical modification of C60 for materials science applications , 2004 .

[27]  Xiaoniu Yang,et al.  Crystalline Organization of a Methanofullerene as Used for Plastic Solar‐Cell Applications , 2004 .

[28]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[29]  Y. Harima,et al.  Oligothiophene/fullerene Dyads as Active Photovoltaic Materials , 2003 .

[30]  G. Hadziioannou,et al.  Structural studies on thin films of an unsubstituted oligo(para-phenylenevinylene) , 2002 .

[31]  G. Casalbore-Miceli,et al.  Solar cells based on a fullerene-azothiophene dyad. , 2002, Chemical communications.

[32]  N. S. Sariciftci,et al.  Double-cable polymers for fullerene based organic optoelectronic applications , 2002 .

[33]  C. Brabec,et al.  Molecular engineering of C60-based conjugated oligomer ensembles: modulating the competition between photoinduced energy and electron transfer processes. , 2002, The Journal of organic chemistry.

[34]  J. Gilman,et al.  Nanotechnology , 2001 .

[35]  Paul A. van Hal,et al.  Synthesis, photophysical properties, and photovoltaic devices of oligo(p-phenylene vinylene)-fullerene dyads , 2000 .

[36]  G. Hadziioannou,et al.  MOLECULAR PACKING IN UNSUBSTITUTED SEMICONDUCTING PHENYLENEVINYLENE OLIGOMER AND POLYMER , 1999 .

[37]  G. Hadziioannou,et al.  Synthesis of a C60-oligophenylenevinylene hybrid and its incorporation in a photovoltaic device , 1999 .

[38]  Nobutsugu Minami,et al.  In situ photoconductivity behavior of C60 thin films: Wavelength, temperature, oxygen effect , 1994 .

[39]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[40]  Shigenori Morita,et al.  Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene , 1992 .