Knockout of DLIC1 leads to retinal cone degeneration via disturbing Rab8 transport in zebrafish.

[1]  T. Hornemann,et al.  Loss of the Bardet-Biedl protein Bbs1 alters photoreceptor outer segment protein and lipid composition , 2022, Nature Communications.

[2]  S. Neuhauss,et al.  Biochemistry and physiology of zebrafish photoreceptors , 2021, Pflügers Archiv - European Journal of Physiology.

[3]  A. Need,et al.  DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration , 2020, Genetics in Medicine.

[4]  Mugen Liu,et al.  Heat shock factor 4 regulates lysosome activity by modulating the αB-crystallin-ATP6V1A-mTOR complex in ocular lens. , 2019, Biochimica et biophysica acta. General subjects.

[5]  Mugen Liu,et al.  Knocking out lca5 in zebrafish causes cone-rod dystrophy due to impaired outer segment protein trafficking. , 2019, Biochimica et biophysica acta. Molecular basis of disease.

[6]  Fei Liu,et al.  Deletion of the transmembrane protein Prom1b in zebrafish disrupts outer-segment morphogenesis and causes photoreceptor degeneration , 2019, The Journal of Biological Chemistry.

[7]  A. Carter,et al.  Structure of the dynein-2 complex and its assembly with intraflagellar transport trains , 2019, Nature Structural & Molecular Biology.

[8]  Fei Liu,et al.  Knockout of ush2a gene in zebrafish causes hearing impairment and late onset rod-cone dystrophy , 2018, Human Genetics.

[9]  Samara L. Reck-Peterson,et al.  The cytoplasmic dynein transport machinery and its many cargoes , 2018, Nature Reviews Molecular Cell Biology.

[10]  R. Dominguez,et al.  A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity , 2018, Nature Communications.

[11]  S. Neuhauss,et al.  Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors , 2017, PLoS genetics.

[12]  D. Nickerson,et al.  Mutations in DYNC2H1, the cytoplasmic dynein 2, heavy chain 1 motor protein gene, cause short‐rib polydactyly type I, Saldino–Noonan type , 2017, Clinical genetics.

[13]  X. Shu,et al.  CERKL gene knockout disturbs photoreceptor outer segment phagocytosis and causes rod-cone dystrophy in zebrafish , 2017, Human molecular genetics.

[14]  Saikat Mukhopadhyay,et al.  Trafficking to the primary cilium membrane , 2017, Molecular biology of the cell.

[15]  David S. Williams,et al.  Molecular basis for photoreceptor outer segment architecture , 2016, Progress in Retinal and Eye Research.

[16]  Hiromi Hirata,et al.  Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport* , 2016, The Journal of Biological Chemistry.

[17]  Joseph Fogerty,et al.  Mutations in the Dynein1 Complex are Permissible for Basal Body Migration in Photoreceptors but Alter Rab6 Localization. , 2016, Advances in experimental medicine and biology.

[18]  C. Basquin,et al.  Structure of Rab11–FIP3–Rabin8 reveals simultaneous binding of FIP3 and Rabin8 effectors to Rab11 , 2015, Nature Structural &Molecular Biology.

[19]  N. Papalopulu,et al.  Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion , 2014, The Journal of cell biology.

[20]  R. Wong,et al.  Functional architecture of the retina: Development and disease , 2014, Progress in Retinal and Eye Research.

[21]  R. Vale,et al.  A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region , 2014, eLife.

[22]  N. Gueven,et al.  Zebrafish—on the move towards ophthalmological research , 2014, Eye.

[23]  W. Tao,et al.  Dlic1 deficiency impairs ciliogenesis of photoreceptors by destabilizing dynein , 2013, Cell Research.

[24]  D. L. Stenkamp The rod photoreceptor lineage of teleost fish , 2011, Progress in Retinal and Eye Research.

[25]  D. Stephens,et al.  A role for Tctex-1 (DYNLT1) in controlling primary cilium length. , 2011, European journal of cell biology.

[26]  D. Bannerman,et al.  Behavioral and Other Phenotypes in a Cytoplasmic Dynein Light Intermediate Chain 1 Mutant Mouse , 2011, The Journal of Neuroscience.

[27]  R. Vallee,et al.  Recruitment of dynein to late endosomes and lysosomes through light intermediate chains , 2011, Molecular biology of the cell.

[28]  V. Sheffield,et al.  Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome , 2011, Proceedings of the National Academy of Sciences.

[29]  M. Nachury,et al.  Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? , 2010, Annual review of cell and developmental biology.

[30]  Wei Guo,et al.  Coordination of Rab8 and Rab11 in primary ciliogenesis , 2010, Proceedings of the National Academy of Sciences.

[31]  C. Futter,et al.  Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment , 2010, Journal of Cell Science.

[32]  A. Amsterdam,et al.  Analysis of a zebrafish dync1h1 mutant reveals multiple functions for cytoplasmic dynein 1 during retinal photoreceptor development , 2010, Neural Development.

[33]  Ronald D. Vale,et al.  Regulators of the cytoplasmic dynein motor , 2009, Nature Reviews Molecular Cell Biology.

[34]  B. Krock,et al.  Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. , 2009, Investigative ophthalmology & visual science.

[35]  D. Stephens,et al.  Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. , 2009, Molecular biology of the cell.

[36]  A. Munnich,et al.  DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. , 2009, American journal of human genetics.

[37]  Y. Jan,et al.  Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons , 2008, Nature Cell Biology.

[38]  F. Barr,et al.  Functional dissection of Rab GTPases involved in primary cilium formation , 2007, The Journal of cell biology.

[39]  P. Currie,et al.  Animal models of human disease: zebrafish swim into view , 2007, Nature Reviews Genetics.

[40]  S. Baker,et al.  The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance , 2002, The Journal of cell biology.

[41]  D. Deretic,et al.  Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. , 2001, Molecular biology of the cell.

[42]  M. Lavail,et al.  Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.

[43]  R. W. Young THE RENEWAL OF PHOTORECEPTOR CELL OUTER SEGMENTS , 1967, The Journal of cell biology.