String propagators in time-dependent and time-independent homogeneous plane waves

For a special time-dependent homogeneous plane wave background that includes a null singularity we construct the closed string propagators. We carry out the summation over the oscillator modes and extract the worldsheet spacetime structures of string propagators specially near the singularity. We construct the closed string propagators in a time-independent smooth homogeneous plane wave background characterized by the constant dilaton, the constant null NS-NS field strength and the constant magnetic field. By expressing them in terms of the hypergeometric function we reveal the background field dependences and the worldsheet spacetime structures of string propagators. The conformal invariance condition for the constant dilaton plays a role to simplify the expressions of string propagators.

[1]  S. Hirano,et al.  Classical and Quantum Strings in compactified pp-waves and Godel type Universes , 2003, hep-th/0307265.

[2]  Kentaroh Yoshida,et al.  M-theory on a Time-dependent Plane-wave , 2003, hep-th/0309025.

[3]  M.B.Sedra,et al.  Type IIB String Backgrounds on Parallelizable PP-Waves and Conformal Liouville Theory. , 2003, hep-th/0308187.

[4]  J. Figueroa-O’Farrill,et al.  Parallelisable Heterotic Backgrounds , 2003, hep-th/0308141.

[5]  M. Blau,et al.  Gödel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves , 2003, hep-th/0306161.

[6]  S. Yamaguchi,et al.  Dilatonic parallelizable NS–NS backgrounds , 2003, hep-th/0306038.

[7]  J. Figueroa-O’Farrill On parallelisable NS-NS backgrounds , 2003, hep-th/0305079.

[8]  G. Papadopoulos,et al.  Solvable models of strings in homogeneous plane wave backgrounds , 2003, hep-th/0304198.

[9]  M. M. Sheikh-Jabbari,et al.  String theory on parallelizable PP-waves , 2003, hep-th/0304169.

[10]  N. Sanchez CLASSICAL AND QUANTUM STRINGS IN PLANE WAVES, SHOCK WAVES AND SPACE–TIME SINGULARITIES: SYNTHESIS AND NEW RESULTS , 2003, hep-th/0302214.

[11]  T. Takayanagi,et al.  Supersymmetric Gödel Universes in string theory , 2003, hep-th/0301206.

[12]  M. Blau,et al.  Homogeneous plane waves , 2002, hep-th/0212135.

[13]  G. Papadopoulos,et al.  Solvable model of strings in a time-dependent plane-wave background , 2002, hep-th/0211289.

[14]  S. Ryang Penrose limits of branes and marginal intersecting branes , 2002, hep-th/0209218.

[15]  J. Maldacena,et al.  Strings in flat space and pp waves from N = 4 Super Yang Mills , 2002 .

[16]  H. Fuji,et al.  Penrose Limit and String Theories on Various Brane Backgrounds , 2002, hep-th/0209004.

[17]  M. Vasiliev,et al.  N=1 Supersymmetric Theory of Higher Spin Gauge Fields in AdS(5) at the Cubic Level , 2002, hep-th/0206068.

[18]  R. R. Metsaev Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background , 2002 .

[19]  A. Tseytlin,et al.  Exactly solvable model of superstring in plane wave Ramond-Ramond background , 2002, hep-th/0202109.

[20]  G. Papadopoulos,et al.  Penrose limits, supergravity and brane dynamics , 2002, hep-th/0202111.

[21]  J. Maldacena,et al.  Strings in flat space and pp waves from ${\cal N}=4$ Super Yang Mills , 2002, hep-th/0202021.

[22]  G. Papadopoulos,et al.  A new maximally supersymmetric background of IIB superstring theory , 2001, hep-th/0110242.

[23]  R. Gueven Plane wave limits and T-duality , 2000, hep-th/0005061.

[24]  E. Witten,et al.  String theory and noncommutative geometry , 1999, hep-th/9908142.

[25]  H. Vega,et al.  Classical and quantum strings near spacetime singularities: gravitational plane waves with arbitrary polarization , 1993 .

[26]  H J de Vega,et al.  Classical and quantum strings near spacetime singularities: gravitational plane waves with arbitrary polarization , 1993 .

[27]  Sánchez,et al.  Strings falling into spacetime singularities. , 1992, Physical review. D, Particles and fields.

[28]  R. Brooks Plane wave gravitons, curvature singularities and string physics , 1991 .

[29]  Steif,et al.  Strings in strong gravitational fields. , 1990, Physical review. D, Particles and fields.

[30]  Horowitz,et al.  Spacetime singularities in string theory. , 1990, Physical review letters.

[31]  R. Penrose Any Space-Time has a Plane Wave as a Limit , 1976 .