Symplectic nonsqueezing of the KdV flow
暂无分享,去创建一个
[1] J. Krieger. GLOBAL REGULARITY OF WAVE MAPS FROM , 2006 .
[2] YeYaojun. GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .
[3] T. Kappeler,et al. Global fold structure of the Miura map on L2(T) , 2004 .
[4] Y. Tsutsumi,et al. Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition , 2004 .
[5] L. Dickey. Soliton Equations and Hamiltonian Systems , 2003 .
[6] Terence Tao,et al. A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..
[7] T. Tao,et al. Multilinear estimates for periodic KdV equations, and applications , 2001, math/0110049.
[8] Luis Vega,et al. On the ill-posedness of some canonical dispersive equations , 2001 .
[9] T. Tao. Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2000, math/0011173.
[10] T. Tao. Global regularity of wave maps, I: small critical Sobolev norm in high dimension , 2000, math/0010068.
[11] T. Tao. Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000, math/0005001.
[12] S. B. Kuksin. Analysis of Hamiltonian PDEs , 2000 .
[13] Jean Bourgain,et al. Periodic Korteweg de Vries equation with measures as initial data , 1997 .
[14] Luis Vega,et al. A bilinear estimate with applications to the KdV equation , 1996 .
[15] J. Bourgain,et al. Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations , 1995 .
[16] S. B. Kuksin. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's , 1995 .
[17] Eduard Zehnder,et al. Symplectic Invariants and Hamiltonian Dynamics , 1994 .
[18] J. Bourgain. Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties , 1994 .
[19] Luis Vega,et al. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices , 1993 .
[20] J. Bourgain,et al. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .
[21] E. Zehnder,et al. A New Capacity for Symplectic Manifolds , 1990 .
[22] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[23] M. Gromov. Pseudo holomorphic curves in symplectic manifolds , 1985 .
[24] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[25] V. Zakharov,et al. Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .
[26] A. Sjöberg. On the Korteweg-de Vries equation: Existence and uniqueness , 1970 .
[27] Robert M. Miura,et al. Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .