Circulant weighing matrices whose order and weight are products of powers of 2 and 3

We classify all circulant weighing matrices whose order and weight are products of powers of 2 and 3. In particular, we show that proper CW(v,36)@?s exist for all v=0(mod48), all of which are new.

[1]  Jennifer Seberry,et al.  Weighing matrices and their applications , 1997 .

[2]  Ali Nabavi,et al.  Determination of all possible orders of weight 16 circulant weighing matrices , 2006, Finite Fields Their Appl..

[3]  Richard Hain Circulant weighing matrices , 1977 .

[4]  Bernhard Schmidt,et al.  Finiteness of circulant weighing matrices of fixed weight , 2011, J. Comb. Theory, Ser. A.

[5]  Jennifer Seberry,et al.  Circulant weighing matrices , 2010, Cryptography and Communications.

[6]  Siu Lun Ma,et al.  Constructions of Relative Difference Sets with Classical Parameters and Circulant Weighing Matrices , 2002, J. Comb. Theory, Ser. A.

[7]  Siu Lun Ma,et al.  Polynomial addition sets , 1985 .

[8]  Bernhard Schmidt,et al.  Cyclotomic integers and finite geometry , 1999 .

[9]  K. T. Arasu,et al.  Study of proper circulant weighing matrices with weight 9 , 2008, Discret. Math..

[10]  Bernhard Schmidt,et al.  Characters and Cyclotomic Fields in Finite Geometry , 2002 .

[11]  A. Pott,et al.  Difference sets, sequences and their correlation properties , 1999 .

[12]  L. Epstein,et al.  The Classification of Circulant Weighing Matrices of Weight 16 and Odd Order , 1999 .

[13]  K. T. Arasu,et al.  Perfect Ternary Arrays , 1999 .

[14]  T. Y. Lam,et al.  On Vanishing Sums of Roots of Unity , 1995 .

[15]  Dieter Jungnickel,et al.  The Solution of the Waterloo Problem , 1995, J. Comb. Theory, Ser. A.

[16]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[17]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[18]  Ali Nabavi,et al.  Circulant weighing matrices of weight 22t , 2006, Des. Codes Cryptogr..

[19]  R. Turyn Character sums and difference sets. , 1965 .

[20]  Hanfried Lenz,et al.  Design theory , 1985 .

[21]  Circulant (v,k,μ) designs , 1980 .