Adaptive mesh refinement for the control of cost and quality in finite element analysis

Adaptive strategies are a necessary tool to make finite element analysis applicable to engineering practice. In this paper, attention is restricted to mesh adaptivity. Traditionally, the most common mesh adaptive strategies for linear problems are used to reach a prescribed accuracy. This goal is best met with an h-adaptive scheme in combination with an error estimator. In an industrial context, the aim of the mechanical simulations in engineering design is not only to obtain greatest quality but more often a compromise between the desired quality and the computation cost (CPU time, storage, software, competence, human cost, computer used). In this paper, we propose the use of alternative mesh refinement criteria with an h-adaptive procedure for 3D elastic problems. The alternative mesh refinement criteria (MR) are based on: prescribed number of elements with maximum accuracy, prescribed CPU time with maximum accuracy and prescribed memory size with maximum accuracy. These adaptive strategies are based on a technique of error in constitutive relation (the process could be used with other error estimators) and an efficient adaptive technique which automatically takes into account the steep gradient areas. This work proposes a 3D method of adaptivity with the latest version of the INRIA automatic mesh generator GAMHIC3D.

[1]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[2]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[3]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[4]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[5]  Peter Bettess,et al.  Notes on mesh optimal criteria in adaptive finite element computations , 1995 .

[6]  A. J. Morris,et al.  Consistent finite element structural analysis and error control , 1997 .

[7]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[8]  J.-P. Pelle,et al.  Control of analyses with isoparametric elements in both 2‐D and 3‐D , 1999 .

[9]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[10]  Pierre Ladevèze,et al.  Mesh optimization for problems with steep gradients , 1994 .

[11]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[12]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[13]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[14]  J. W. Bull,et al.  Theoretical formulations for adaptive finite element computations , 1995 .

[15]  Rainald Löhner,et al.  Automatic unstructured grid generators , 1997 .

[16]  Eric Florentin,et al.  Evaluation of the local quality of stresses in 3D finite element analysis , 2002 .

[17]  Long-yuan Li,et al.  Adaptive Finite Element Methods: A Review , 1997 .

[18]  P. George Improvements on Delaunay-based three-dimensional automatic mesh generator , 1997 .

[19]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[20]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[21]  Pierre Ladevèze,et al.  An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .

[22]  Pierre Ladevèze,et al.  New advances on a posteriori error on constitutive relation in f.e. analysis , 1997 .

[23]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[24]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[25]  J.-P. Pelle,et al.  Error estimator and adaptivity for three-dimensional finite element analyses , 1998 .

[26]  Patrice Coorevits,et al.  Alternative mesh optimality criteria for h-adaptive finite element method , 2004 .

[27]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[28]  Paul-Louis George,et al.  An efficient algorithm for 3D adaptive meshing , 2001 .

[29]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .

[30]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[31]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[32]  Sebastien Le Loch,et al.  Validation and updating of industrial models based on the constitutive relation error , 2004 .