Mechanics of curvilinear electronics and optoelectronics

Abstract Recent advances in materials, mechanics and fabrication strategies have successfully realized high-performance stretchable electronic and optoelectronic systems that are capable of conformally wrapping onto complex, soft, curvilinear surfaces. This capability enables lots of novel applications that were not possible through conventional electronics that is rigid and flat in nature. In this review, we summarize the advances in mechanics of curvilinear electronics and optoelectronics. Three typical forms of curvilinear systems will be discussed, including fixed hemispherical, tunable hemispherical and general curvilinear shapes. These mechanics models and analyses have shown to be very powerful in design and optimization of such systems, and can also provide important insights to the development of other related systems that combine rigid elements with soft substrates.

[1]  Yonggang Huang,et al.  Stretchable and compressible thin films of stiff materials on compliant wavy substrates , 2008 .

[2]  Yonggang Huang,et al.  Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy , 2012, Proceedings of the National Academy of Sciences.

[3]  Babak Ziaie,et al.  A pH-tunable hydrogel microlens array with temperature-actuated light-switching capability , 2009 .

[4]  B. Botterman,et al.  Carbon nanotube coating improves neuronal recordings. , 2008, Nature nanotechnology.

[5]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[6]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[7]  ERIC M. VOGEL,et al.  Technology and metrology of new electronic materials and devices. , 2007, Nature nanotechnology.

[8]  J. Hutchinson,et al.  Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates , 2004 .

[9]  Lei Li,et al.  Development of a 3D artificial compound eye. , 2010, Optics express.

[10]  G. Whitesides,et al.  Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives , 1991 .

[11]  Xian Huang,et al.  Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins , 2014, Proceedings of the National Academy of Sciences.

[12]  Yonggang Huang,et al.  Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability , 2011, Proceedings of the National Academy of Sciences.

[13]  Weixing Zhou,et al.  Stamp collapse in soft lithography. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[14]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[15]  Jonathan Reeder,et al.  Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces. , 2012, Macromolecular materials and engineering.

[16]  Yonggang Huang,et al.  A strain-isolation design for stretchable electronics , 2010 .

[17]  A. Tünnermann,et al.  Development of a low cost high precision three-layer 3D artificial compound eye. , 2013, Optics express.

[18]  Yonggang Huang,et al.  Multifunctional Epidermal Electronics Printed Directly Onto the Skin , 2013, Advanced materials.

[19]  Nicholas V. Annetta,et al.  A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology , 2010, Science Translational Medicine.

[20]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[21]  Viktor Malyarchuk,et al.  Digital cameras with designs inspired by the arthropod eye , 2013, Nature.

[22]  John A Rogers,et al.  Optimized structural designs for stretchable silicon integrated circuits. , 2009, Small.

[23]  J. Rogers,et al.  Finite width effect of thin-films buckling on compliant substrate : Experimental and theoretical studies , 2008 .

[24]  John A. Rogers,et al.  Mechanics of curvilinear electronics , 2010 .

[25]  Lin Jia,et al.  Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin , 2014, Nature Communications.

[26]  John A Rogers,et al.  Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes. , 2014, Small.

[27]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[28]  Kyung-In Jang,et al.  3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium , 2014, Nature Communications.

[29]  Takao Someya,et al.  Flexible Low‐Voltage Organic Transistors and Circuits Based on a High‐Mobility Organic Semiconductor with Good Air Stability , 2010, Advanced materials.

[30]  Dae-Hyeong Kim,et al.  Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.

[31]  Jie Yin,et al.  Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication , 2010 .

[32]  Jianliang Xiao,et al.  Compliant, Heterogeneously Integrated GaAs Micro‐VCSELs towards Wearable and Implantable Integrated Optoelectronics Platforms , 2014 .

[33]  Woosik Lee,et al.  Fractal design concepts for stretchable electronics , 2014, Nature Communications.

[34]  J. Rogers Materials for semiconductor devices that can bend, fold, twist, and stretch , 2014 .

[35]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[36]  Heung Cho Ko,et al.  Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. , 2010, Small.

[37]  G. Turnbull,et al.  Highly Directional Emission and Beam Steering from Organic Light‐Emitting Diodes with a Substrate Diffractive Optical Element , 2014 .

[38]  Dario Floreano,et al.  Miniature curved artificial compound eyes , 2013, Proceedings of the National Academy of Sciences.

[39]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[40]  Yonggang Huang,et al.  Analytical and Experimental Studies of the Mechanics of Deformation in a Solid With a Wavy Surface Profile , 2010 .

[41]  Jian Wu,et al.  Mechanics of Tunable Hemispherical Electronic Eye Camera Systems That Combine Rigid Device Elements With Soft Elastomers , 2013 .

[42]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[43]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[44]  M. Weaver,et al.  Thin-film permeation-barrier technology for flexible organic light-emitting devices , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[46]  J. Rogers,et al.  Finite deformation mechanics in buckled thin films on compliant supports , 2007, Proceedings of the National Academy of Sciences.

[47]  Alán Aspuru-Guzik,et al.  Tuning charge transport in solution-sheared organic semiconductors using lattice strain , 2011, Nature.

[48]  R. G. Arns,et al.  The other transistor: early history of the metal-oxide semiconductor field-effect transistor , 1998 .

[49]  Viktor Malyarchuk,et al.  Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts , 2010 .

[50]  O. Yeoh Some Forms of the Strain Energy Function for Rubber , 1993 .

[51]  Jung Woo Lee,et al.  Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring , 2014, Nature Communications.

[52]  Christian M. Siket,et al.  Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics , 2010, Advanced materials.

[53]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[54]  J. Rogers,et al.  Mechanics of buckled carbon nanotubes on elastomeric substrates , 2008 .

[55]  J. Rogers,et al.  Stretchable Electronics: Materials Strategies and Devices , 2008 .

[56]  Yewang Su,et al.  Postbuckling analysis and its application to stretchable electronics , 2012 .

[57]  Lenore L. Dai,et al.  Electronically Programmable, Reversible Shape Change in Two‐ and Three‐Dimensional Hydrogel Structures , 2013, Advanced materials.

[58]  John A. Rogers,et al.  Mechanics of stretchable inorganic electronic materials , 2009 .

[59]  Chad M. Landis,et al.  Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates , 2011 .

[60]  John A. Rogers,et al.  Buckling of a stiff thin film on a compliant substrate in large deformation , 2008 .

[61]  Andreas Tünnermann,et al.  Thin wafer-level camera lenses inspired by insect compound eyes. , 2010, Optics express.

[62]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[63]  Heung Cho Ko,et al.  Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. , 2009, Small.

[64]  Hongrui Jiang,et al.  Tunable liquid microlens actuated by infrared light-responsive hydrogel , 2008 .

[65]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[66]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[67]  Yonggang Huang,et al.  Biaxially stretchable "wavy" silicon nanomembranes. , 2007, Nano letters.

[68]  John A. Rogers,et al.  Mechanics of precisely controlled thin film buckling on elastomeric substrate , 2007 .

[69]  Rui Huang,et al.  Buckling modes of elastic thin films on elastic substrates , 2007 .

[70]  Robert L. Rennaker,et al.  Fabrication of Responsive, Softening Neural Interfaces , 2012 .

[71]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[72]  Yonggang Huang,et al.  Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics , 2010 .

[73]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[74]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[75]  Hugh Calkins,et al.  State-of-the-art and emerging technologies for atrial fibrillation ablation , 2010, Nature Reviews Cardiology.

[76]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[77]  Dario Floreano,et al.  Flying Insects and Robots , 2010 .

[78]  Huanyu Cheng,et al.  Mechanics of ultra-stretchable self-similar serpentine interconnects , 2013 .

[79]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[80]  Zhenan Bao,et al.  Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. , 2013, Nature materials.

[81]  Andreas Tünnermann,et al.  The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects. , 2009, Optics express.

[82]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[83]  Ulrike Wallrabe,et al.  Mechanical properties of silicones for MEMS , 2008 .

[84]  John A. Rogers,et al.  Mechanics of hemispherical electronics , 2009 .

[85]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[86]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[87]  Yewang Su,et al.  Mechanics of Epidermal Electronics , 2012 .

[88]  Jonathan A. Fan,et al.  Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain , 2014 .

[89]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[90]  B. Newby,et al.  Macroscopic Evidence of the Effect of Interfacial Slippage on Adhesion , 1995, Science.

[91]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[92]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[93]  S. Forrest,et al.  Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays , 2008 .

[94]  J. Rogers,et al.  Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates , 2010, Nanotechnology.

[95]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[96]  Jianliang Xiao,et al.  Morphing Metal–Polymer Janus Particles , 2014, Advanced materials.

[97]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[98]  J. Rogers,et al.  Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.

[99]  James J. S. Norton,et al.  Materials and Optimized Designs for Human‐Machine Interfaces Via Epidermal Electronics , 2013, Advanced materials.

[100]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[101]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Herringbone buckling patterns of anisotropic thin films on elastomeric substrates , 2010 .

[103]  H. Jerry Qi,et al.  A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes , 2011 .

[104]  John A. Rogers,et al.  Local versus global buckling of thin films on elastomeric substrates , 2008 .

[105]  Yonggang Huang,et al.  Edge effects in buckled thin films on elastomeric substrates , 2007 .

[106]  Izuo Hayashi,et al.  Optoelectronic Devices and Material Technologies for Photo-Electronic Integrated Systems , 1993 .

[107]  Jonathan A. Fan,et al.  Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics , 2014 .

[108]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[109]  John A. Rogers,et al.  Mechanics of noncoplanar mesh design for stretchable electronic circuits , 2009 .

[110]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[111]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .