Overview of Electrochemical DNA Biosensors: New Approaches to Detect the Expression of Life

DNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout. In this review, we will consider the different methods proposed for biochip construction, focusing on electrochemical detection of DNA. We also introduce a novel single-stranded DNA platform performing high-throughput SNP detection and gene expression profiling.

[1]  K. Goodwin,et al.  Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. , 2007, Marine pollution bulletin.

[2]  P. Sorger,et al.  Electronic detection of DNA by its intrinsic molecular charge , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Belcher,et al.  Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. , 2007, Nature nanotechnology.

[4]  Elizabeth M. Boon,et al.  Mutation detection by electrocatalysis at DNA-modified electrodes , 2000, Nature Biotechnology.

[5]  F. Denoeud,et al.  Annotating genomes with massive-scale RNA sequencing , 2008, Genome Biology.

[6]  A. Steel,et al.  Electrochemical quantitation of DNA immobilized on gold. , 1998, Analytical chemistry.

[7]  Eivind Hovig,et al.  Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling , 2006, Nucleic acids research.

[8]  K. Gunderson,et al.  A genome-wide scalable SNP genotyping assay using microarray technology , 2005, Nature Genetics.

[9]  Jang-Kyoo Shin,et al.  An FET-type charge sensor for highly sensitive detection of DNA sequence. , 2004, Biosensors & bioelectronics.

[10]  Markus Beier,et al.  Validation of a novel, fully integrated and flexible microarray benchtop facility for gene expression profiling. , 2003, Nucleic acids research.

[11]  M. Lowery-Nordberg,et al.  Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia , 2009, Leukemia.

[12]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[13]  Philippe Rigault,et al.  A novel, high-performance random array platform for quantitative gene expression profiling. , 2004, Genome research.

[14]  Gundula Piechotta,et al.  Electrical biochip technology—a tool for microarrays and continuous monitoring , 2003, Analytical and bioanalytical chemistry.

[15]  Long Jiang,et al.  A novel microgravimetric DNA sensor with high sensitivity. , 2003, Biochemical and biophysical research communications.

[16]  S. Hernández,et al.  In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. , 2007, Biosensors & bioelectronics.

[17]  Walter S. Hughes,et al.  THE POTENTIAL DIFFERENCE BETWEEN GLASS AND ELECTROLYTES IN CONTACT WITH THE GLASS , 1922 .

[18]  Itamar Willner,et al.  Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems. , 2005, Angewandte Chemie.

[19]  Z. Modrušan,et al.  Optimized T7 amplification system for microarray analysis. , 2001, BioTechniques.

[20]  Kia Peyvan,et al.  CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. , 2007, Biosensors & bioelectronics.

[21]  R. Corn,et al.  Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. , 2004, Analytical chemistry.

[22]  Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode. , 2008, The Analyst.

[23]  Franco Cerrina,et al.  Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. , 2002, Genome research.

[24]  Martin Dufva,et al.  Fabrication of high quality microarrays. , 2005, Biomolecular engineering.

[25]  Fumiaki Katagiri,et al.  Overview of mRNA Expression Profiling Using DNA Microarrays , 2009, Current protocols in molecular biology.

[26]  Nathan G. Clack,et al.  Electrostatic readout of DNA microarrays with charged microspheres , 2008, Nature Biotechnology.

[27]  H Holden Thorp,et al.  Electrochemical detection of gene expression in tumor samples: overexpression of Rak nuclear tyrosine kinase. , 2002, Bioconjugate chemistry.

[28]  T. Vo‐Dinh,et al.  Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis. , 2005, Methods in molecular biology.

[29]  X. Zhou,et al.  Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. , 2001, Biosensors & bioelectronics.

[30]  B. Xiao,et al.  Differential expression of microRNA species in human gastric cancer versus non‐tumorous tissues , 2009, Journal of gastroenterology and hepatology.

[31]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[33]  H. Thorp,et al.  Modification of indium tin oxide electrodes with repeat polynucleotides: electrochemical detection of trinucleotide repeat expansion. , 2001, Analytical chemistry.

[34]  C. Promptmas,et al.  Detection and haplotype differentiation of Southeast Asian alpha-thalassemia using polymerase chain reaction and a piezoelectric biosensor immobilized with a single oligonucleotide probe. , 2008, Translational research : the journal of laboratory and clinical medicine.

[35]  A. Roda,et al.  New trends in bioanalytical tools for the detection of genetically modified organisms: an update , 2008, Analytical and bioanalytical chemistry.

[36]  Yiping Shen,et al.  Microarray-based genomic DNA profiling technologies in clinical molecular diagnostics. , 2009, Clinical chemistry.

[37]  L. Blum,et al.  DNA biosensors and microarrays. , 2008, Chemical reviews.

[38]  P. He,et al.  Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. , 1998, Talanta.

[39]  George M. Church,et al.  Overview of DNA Sequencing Strategies , 2011, Current protocols in molecular biology.

[40]  Xinchen Sun,et al.  Polymorphisms in XRCC1 and XPG and response to platinum-based chemotherapy in advanced non-small cell lung cancer patients. , 2009, Lung cancer.

[41]  R. Thewes,et al.  A Fully Electronic Label-Free DNA Sensor Chip , 2007, IEEE Sensors Journal.

[42]  Michael Keusgen,et al.  Biosensors: new approaches in drug discovery , 2002, Naturwissenschaften.

[43]  Douglas R. Kauffman,et al.  Electronically monitoring biological interactions with carbon nanotube field-effect transistors. , 2008, Chemical Society reviews.

[44]  F. Fahrenholz,et al.  Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice , 2009, BMC Genomics.

[45]  Katsutoshi Takahashi,et al.  In Vitro Selection of DNA Aptamers on Chips Using a Method for Generating Point Mutations , 2004 .

[46]  A. MacKenzie,et al.  Rapid detection of single nucleotide polymorphisms associated with spinal muscular atrophy by use of a reusable fibre-optic biosensor. , 2004, Nucleic acids research.

[47]  Eugene Tu,et al.  Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications , 2002, Psychiatric genetics.

[48]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[49]  Sara Tombelli,et al.  Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection. , 2003, Biosensors & bioelectronics.

[50]  R. Georgiadis,et al.  Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Rivas,et al.  Electrochemical Biosensors for Sequence‐Specific DNA Detection , 2005 .

[52]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[53]  Wei Wang,et al.  Electrochemically Generated Acid and Its Containment to 100 Micron Reaction Areas for the Production of DNA Microarrays , 2006, PloS one.

[54]  T. Giger,et al.  The Cerebral Microvasculature in Schizophrenia: A Laser Capture Microdissection Study , 2008, PloS one.

[55]  C Guiducci,et al.  DNA detection by integrable electronics. , 2004, Biosensors & bioelectronics.

[56]  A. Tiwari,et al.  Electrochemical detection of a breast cancer susceptible gene using cDNA immobilized chitosan-co-polyaniline electrode. , 2009, Talanta.

[57]  R. W. Davis,et al.  Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Eduardo Antonio Donadi,et al.  Differential gene expression of peripheral blood mononuclear cells from rheumatoid arthritis patients may discriminate immunogenetic, pathogenic and treatment features , 2009, Immunology.

[59]  C. Verweij,et al.  Transcription profiling of rheumatic diseases , 2009, Arthritis research & therapy.

[60]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.

[61]  Luca Benini,et al.  Electronic Detection of DNA Hybridization: Toward CMOS Microarrays , 2007, IEEE Design & Test of Computers.

[62]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[63]  Agustín Costa-García,et al.  DNA single-base mismatch study with an electrochemical enzymatic genosensor , 2006, Biosensors and Bioelectronics.

[64]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[65]  Chiara Romualdi,et al.  Expression profiling characterization of laminin α-2 positive MDC , 2006 .

[66]  R Gambari,et al.  Biosensor technology and surface plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction. , 1997, Clinical and diagnostic virology.

[67]  R. Hamers Nanotechnology: Diamonds are for tethers , 2008, Nature.

[68]  J. Burgess,et al.  New developments in the analysis of gene expression , 2000, Redox report : communications in free radical research.

[69]  D. Geschwind,et al.  An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis. , 2002, Nucleic acids research.

[70]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[72]  G. Lanfranchi,et al.  Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries , 2009, BMC Genomics.

[73]  Douglas A Christensen,et al.  Single-chain polymorphism analysis in long QT syndrome using planar waveguide fluorescent biosensors. , 2003, Analytical Biochemistry.

[74]  Tian Xia,et al.  Part II: coordinated biosensors--development of enhanced nanobiosensors for biological and medical applications. , 2007, Nanomedicine.

[75]  R L Stears,et al.  A novel, sensitive detection system for high-density microarrays using dendrimer technology. , 2000, Physiological genomics.

[76]  Emmanuel Barillot,et al.  Genomic profiling and identification of high-risk uveal melanoma by array CGH analysis of primary tumors and liver metastases. , 2009, Investigative ophthalmology & visual science.

[77]  Otto S. Wolfbeis,et al.  Fluorescence Analysis in Microarray Technology , 2005 .

[78]  S. P. Fodor,et al.  Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two–colour fluorescence analysis , 1996, Nature Genetics.

[79]  Dmitri Ivnitski,et al.  Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. , 2003, BioTechniques.

[80]  Michael Schäferling,et al.  Optical technologies for the read out and quality control of DNA and protein microarrays , 2006, Analytical and bioanalytical chemistry.

[81]  G. Rivas,et al.  Carbon nanotubes for electrochemical biosensing. , 2007, Talanta.

[82]  K. M. Millan,et al.  Sequence-selective biosensor for DNA based on electroactive hybridization indicators. , 1993, Analytical chemistry.

[83]  Tuan Vo-Dinh,et al.  Application of a miniature biochip using the molecular beacon probe in breast cancer gene BRCA1 detection. , 2004, Biosensors & bioelectronics.

[84]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[85]  Igor Jurisica,et al.  Optimization of experimental design parameters for high-throughput chromatin immunoprecipitation studies , 2008, Nucleic acids research.

[86]  J. Schenkman,et al.  Biochemical applications of ultrathin films of enzymes, polyions and DNA. , 2008, Chemical communications.

[87]  Kagan Kerman,et al.  Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. , 2002, Analytical chemistry.

[88]  L. Wodicka,et al.  Genome-wide expression monitoring in Saccharomyces cerevisiae , 1997, Nature Biotechnology.

[89]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[90]  M. Campàs,et al.  DNA biochip arraying, detection and amplification strategies , 2004 .

[91]  Hanna Radecka,et al.  Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready® in Samples not Amplified by PCR , 2007, Sensors (Basel, Switzerland).

[92]  Agustín Costa-García,et al.  Alkaline phosphatase-catalyzed silver deposition for electrochemical detection. , 2007, Analytical chemistry.

[93]  R. Geffers,et al.  Evaluation of a microarray-hybridization based method applicable for discovery of single nucleotide polymorphisms (SNPs) in the Pseudomonas aeruginosa genome , 2009, BMC Genomics.

[94]  Chiara Romualdi,et al.  Parallel protein and transcript profiles of FSHD patient muscles correlate to the D4Z4 arrangement and reveal a common impairment of slow to fast fibre differentiation and a general deregulation of MyoD‐dependent genes , 2006, Proteomics.

[95]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[96]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[97]  John Quackenbush,et al.  What would you do if you could sequence everything? , 2008, Nature Biotechnology.

[98]  K. Horimoto,et al.  Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma , 2009, Hepatology.

[99]  Yunqing Ma,et al.  Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. , 2009, Analytical chemistry.

[100]  E. Davidson,et al.  Recovery of developmentally defined gene sets from high-density cDNA macroarrays. , 2000, Developmental biology.

[101]  H. Yowanto,et al.  Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. , 2001, The Journal of molecular diagnostics : JMD.

[102]  Wei Li,et al.  MicroRNA detection by microarray , 2009, Analytical and bioanalytical chemistry.

[103]  Nobuo Kimizuka and,et al.  Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels , 2001 .

[104]  F. Uslu,et al.  Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. , 2004, Biosensors & bioelectronics.

[105]  Luca Benini,et al.  Interface Layering Phenomena in Capacitance Detection of DNA with Biochips , 2007 .

[106]  L. Benini,et al.  Microelectrodes on a Silicon Chip for Label-Free Capacitive DNA Sensing , 2006, IEEE Sensors Journal.

[107]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[108]  T. McCaffrey,et al.  Genome-wide Analysis of BP1 Transcriptional Targets in Breast Cancer Cell Line Hs578T , 2008, International journal of biological sciences.

[109]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[110]  Sandra B. Munro,et al.  Identification of Upper Respiratory Tract Pathogens Using Electrochemical Detection on an Oligonucleotide Microarray , 2007, PloS one.

[111]  D. Kell,et al.  Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape , 2008, Nucleic acids research.

[112]  G. Marrazza,et al.  Disposable DNA electrochemical sensor for hybridization detection. , 1999, Biosensors & bioelectronics.

[113]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[114]  I. Willner,et al.  Switchable motion of DNA on solid supports. , 2009, Angewandte Chemie.

[115]  Ilaria Palchetti,et al.  Nucleic acid biosensors for environmental pollution monitoring. , 2008, The Analyst.

[116]  A. Peterson,et al.  Surface Plasmon Resonance Spectroscopy as a Probe of In-Plane Polymerization in Monolayer Organic Conducting Films , 2000 .

[117]  Keying Zhang,et al.  Electrochemical DNA biosensor based on silver nanoparticles/poly(3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode. , 2009, Analytical biochemistry.

[118]  Chiara Romualdi,et al.  A leukemia-enriched cDNA microarray platform identifies new transcripts with relevance to the biology of pediatric acute lymphoblastic leukemia. , 2005, Haematologica.

[119]  Ying Xu,et al.  A Review: Electrochemical DNA Biosensors for Sequence Recognition , 2005 .

[120]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. , 2003, Analytical chemistry.

[121]  M. Mascini,et al.  Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[122]  W. Holzgreve,et al.  Nucleic acid based biosensors: the desires of the user. , 2005, Bioelectrochemistry.

[124]  G. Marrazza,et al.  Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. , 2004, Biosensors & bioelectronics.

[125]  James L. Winkler,et al.  Accessing Genetic Information with High-Density DNA Arrays , 1996, Science.

[126]  B. Palsson,et al.  Genomewide identification of protein binding locations using chromatin immunoprecipitation coupled with microarray. , 2008, Methods in molecular biology.

[127]  S. Ginsberg,et al.  Terminal continuation (TC) RNA amplification without second strand synthesis , 2009, Journal of Neuroscience Methods.

[128]  Wei Li,et al.  Differential gene expression profiling of laryngeal squamous cell carcinoma by laser capture microdissection and complementary DNA microarrays. , 2009, Archives of medical research.

[129]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[130]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[131]  Roberto Gambari,et al.  Surface plasmon resonance for detection of genetically modified organisms in the food supply. , 2006, Journal of AOAC International.

[132]  C. Fan,et al.  Electrochemical interrogation of DNA monolayers on gold surfaces. , 2005, Analytical chemistry.

[133]  E. Paleček,et al.  Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid , 1960, Nature.

[134]  R. Stoughton Applications of DNA microarrays in biology. , 2005, Annual review of biochemistry.

[135]  M. Kronick,et al.  Creation of the whole human genome microarray , 2004, Expert review of proteomics.

[136]  M. Ericson,et al.  DNA biochip using a phototransistor integrated circuit. , 1999, Analytical chemistry.

[137]  Justin A. Ionita,et al.  Selective release of DNA from the surface of indium-tin oxide thin electrode films using thiol-disulfide exchange chemistry. , 2007, Analytical chemistry.

[138]  Dawood B Dudekula,et al.  Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray , 2005, Genome Biology.

[139]  Elizabeth M. Boon,et al.  Charge transport in DNA. , 2002, Current opinion in structural biology.

[140]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[141]  E R Richter,et al.  Biosensors: applications for dairy food industry. , 1993, Journal of dairy science.

[142]  G. Lanfranchi,et al.  Development of mussel mRNA profiling: Can gene expression trends reveal coastal water pollution? , 2006, Mutation research.

[143]  Eric E. Schadt,et al.  Calibrating the Performance of SNP Arrays for Whole-Genome Association Studies , 2008, PLoS genetics.

[144]  G G Guilbault,et al.  Piezoelectric crystal biosensors. , 1990, Biosensors & bioelectronics.

[145]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[146]  G. Lanfranchi,et al.  Expression profiling characterization of laminin alpha-2 positive MDC. , 2006, Biochemical and biophysical research communications.

[147]  E Zanoni,et al.  A fully electronic sensor for the measurement of cDNA hybridization kinetics. , 2007, Biosensors & bioelectronics.

[148]  A Logrieco,et al.  DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: A review , 2005, Food additives and contaminants.

[149]  Ladislav Novotný,et al.  Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. , 2002, Analytical chemistry.

[150]  I. Willner,et al.  Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. , 2002, Talanta.

[151]  A. Viarengo,et al.  Gene transcription profiling in pollutant exposed mussels (Mytilus spp.) using a new low-density oligonucleotide microarray. , 2006, Gene.

[152]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. , 2007, Biosensors & bioelectronics.

[153]  DNA aptamers that recognize fluorophore using on-chip screening in combination with an in silico evolution. , 2003, Nucleic acids research. Supplement.

[154]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[155]  Whole genome analysis: experimental access to all genome sequenced segments through larger-scale efficient oligonucleotide synthesis and PCR. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[156]  M. Heller,et al.  Electric field directed nucleic acid hybridization on microchips. , 1997, Nucleic acids research.

[157]  Giorgio Valle,et al.  Gene expression profiling in dysferlinopathies using a dedicated muscle microarray. , 2002, Human molecular genetics.

[158]  Monika Milewski,et al.  Decoding randomly ordered DNA arrays. , 2004, Genome research.

[159]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[160]  D G Myszka,et al.  BIACORE J: a new platform for routine biomolecular interaction analysis † , 2001, Journal of molecular recognition : JMR.

[161]  J. Zhai,et al.  DNA based biosensors. , 1997, Biotechnology advances.