Positive solutions for integral nonlinear boundary value problem in fractional Sobolev spaces

[1]  A. Jajarmi,et al.  A new mathematical model for Zika virus transmission , 2020 .

[2]  S. Rezapour,et al.  On the existence of solutions for fractional boundary value problems on the ethane graph , 2020 .

[3]  S. Stanek Periodic problem for two-term fractional differential equations , 2017 .

[4]  D. Baleanu,et al.  A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative , 2020 .

[5]  Shuqin Zhang,et al.  EXISTENCE OF SOLUTION FOR A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER * * Supported by the National 973-Project from MOST and Trans-Century Training Programme Foundation for the Talents by Ministry of Education and the Postdoctoral Foundation of China. , 2006 .

[6]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[7]  A. Granas,et al.  Fixed Point Theory , 2003 .

[8]  M. Bergounioux,et al.  Fractional sobolev spaces and functions of bounded variation of one variable , 2016, 1603.05033.

[9]  N. Tuan,et al.  A mathematical model for COVID-19 transmission by using the Caputo fractional derivative , 2020, Chaos, Solitons & Fractals.

[10]  Dumitru Baleanu,et al.  A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions , 2020 .

[11]  Existence for boundary value problems of two-term Caputo fractional differential equations , 2017 .

[12]  Daqing Jiang,et al.  Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation , 2009 .

[13]  D. Baleanu,et al.  Analyzing transient response of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative , 2020 .

[14]  S. Rezapour,et al.  Approximate solutions for a fractional hybrid initial value problem via the Caputo conformable derivative , 2020 .

[15]  D. O’Regan,et al.  Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations , 2010 .

[16]  J. A. Tenreiro Machado,et al.  A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Application to the Modelling of the Steady Heat Flow , 2015, 1601.01623.

[17]  Zhanbing Bai,et al.  Positive solutions for boundary value problem of nonlinear fractional differential equation , 2005 .

[18]  D. Baleanu,et al.  A mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the Rubella disease model , 2020 .

[19]  D. Baleanu,et al.  Analysis of the model of HIV-1 infection of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$CD4^{+}$\end{document} , 2020, Advances in Difference Equations.

[20]  Xiao‐Jun Yang,et al.  New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity , 2019, Thermal Science.

[21]  S. Rezapour,et al.  On a new structure of the pantograph inclusion problem in the Caputo conformable setting , 2020 .

[22]  A. Ardjouni,et al.  Positive solutions for nonlinear fractional differential equations , 2017 .

[23]  Dumitru Baleanu,et al.  A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative , 2020, Advances in Difference Equations.

[24]  On a fractional hybrid version of the Sturm–Liouville equation , 2020 .

[25]  T. Taha,et al.  A new general fractional-order derivative with Rabotnov fractional-exponential kernel , 2019, Thermal Science.

[26]  Xiao-jun Yang New non-conventional methods for quantitative concepts of anomalous rheology , 2019, Thermal Science.