Towards Practical Private Information Retrieval From MDS Array Codes

Private information retrieval (PIR) is the problem of privately retrieving one out of <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> original files from <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> severs, <italic>i.e.</italic>, each individual server gains no information on the identity of the file that the user is requesting. Usually, the <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> files are replicated or encoded by a maximum distance separable (MDS) code and then stored across the <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> servers. Compared to mere replication, MDS-coded servers can significantly reduce the storage overhead. Particularly, PIR from minimum storage regenerating (MSR) coded servers can simultaneously reduce the repair bandwidth when repairing failed servers. Existing PIR protocols from MSR-coded servers either require large sub-packetization levels or are not capacity-achieving. In this paper, a PIR protocol from MDS array codes is proposed, subsuming PIR from MSR-coded servers as a special case. Particularly, only the case of non-colluding, honest-but-curious servers is considered. The retrieval rate of the new PIR protocol achieves the capacity of PIR from MDS-/MSR-coded servers. By choosing different MDS array codes, the new PIR protocol can have varying advantages when compared with existing protocols, <italic>e.g.</italic>, 1) small sub-packetization, 2) (near-)optimal repair bandwidth, 3) implementable over the binary field <inline-formula> <tex-math notation="LaTeX">$\mathbf {F}_{2}$ </tex-math></inline-formula>.

[1]  Kannan Ramchandran,et al.  A Piggybacking Design Framework for Read-and Download-Efficient Distributed Storage Codes , 2017, IEEE Transactions on Information Theory.

[2]  Jie Li,et al.  A Systematic Construction of MDS Codes with Small Sub-packetization Level and Near Optimal Repair Bandwidth , 2019, ArXiv.

[3]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[4]  P. Vijay Kumar,et al.  An Explicit, Coupled-Layer Construction of a High-Rate MSR Code with Low Sub-Packetization Level, Small Field Size and All-Node Repair , 2016, ArXiv.

[5]  Jie Li,et al.  A New Repair Strategy for the Hadamard Minimum Storage Regenerating Codes for Distributed Storage Systems , 2015, IEEE Transactions on Information Theory.

[6]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.

[7]  Hsuan-Yin Lin,et al.  Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes , 2017, IEEE Transactions on Information Theory.

[8]  Alexander Barg,et al.  Explicit Constructions of High-Rate MDS Array Codes With Optimal Repair Bandwidth , 2016, IEEE Transactions on Information Theory.

[9]  Alexander Barg,et al.  Explicit Constructions of Optimal-Access MDS Codes With Nearly Optimal Sub-Packetization , 2016, IEEE Transactions on Information Theory.

[10]  Chao Tian Characterizing the Rate Region of the (4,3,3) Exact-Repair Regenerating Codes , 2014, IEEE Journal on Selected Areas in Communications.

[11]  GhemawatSanjay,et al.  The Google file system , 2003 .

[12]  Jie Li,et al.  A generic transformation for optimal repair bandwidth and rebuilding access in MDS codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[13]  Xin Wang,et al.  Two New Classes of Two-Parity MDS Array Codes With Optimal Repair , 2016, IEEE Communications Letters.

[14]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[15]  Jingke Xu,et al.  On sub-packetization and access number of capacity-achieving PIR schemes for MDS coded non-colluding servers , 2018, Science China Information Sciences.

[16]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[17]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[18]  Chao Tian,et al.  Capacity-Achieving Private Information Retrieval Codes from MDS-Coded Databases with Minimum Message Size , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[19]  Venkatesan Guruswami,et al.  MDS Code Constructions With Small Sub-Packetization and Near-Optimal Repair Bandwidth , 2017, IEEE Transactions on Information Theory.

[20]  Alexandre Graell i Amat,et al.  Private information retrieval in distributed storage systems using an arbitrary linear code , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[21]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..

[22]  Jie Li,et al.  A Note on the Transformation to Enable Optimal Repair in MDS Codes for Distributed Storage Systems , 2019, ArXiv.

[23]  Chao Tian,et al.  Breaking the MDS-PIR Capacity Barrier via Joint Storage Coding , 2019, Inf..

[24]  Qin Huang,et al.  A Repair-Efficient Coding for Distributed Storage Systems Under Piggybacking Framework , 2018, IEEE Transactions on Communications.

[25]  Hua Sun,et al.  Optimal Download Cost of Private Information Retrieval for Arbitrary Message Length , 2016, IEEE Transactions on Information Forensics and Security.

[26]  Arman Fazeli,et al.  Minimum storage regenerating codes for all parameters , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[27]  Balaji Srinivasan Babu,et al.  A Tight Lower Bound on the Sub- Packetization Level of Optimal-Access MSR and MDS Codes , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[28]  Jie Li,et al.  Explicit Constructions of High-Rate MSR Codes With Optimal Access Property Over Small Finite Fields , 2018, IEEE Transactions on Communications.

[29]  Harald Øverby,et al.  HashTag Erasure Codes: From Theory to Practice , 2016, IEEE Transactions on Big Data.

[30]  Nihar B. Shah,et al.  Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction , 2010, IEEE Transactions on Information Theory.

[31]  Kannan Ramchandran,et al.  Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed Storage , 2013, IEEE Transactions on Information Theory.

[32]  Jie Li,et al.  A Generic Transformation to Enable Optimal Repair in MDS Codes for Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[33]  Eitan Yaakobi,et al.  Codes for distributed PIR with low storage overhead , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[34]  Camilla Hollanti,et al.  $t$ -Private Information Retrieval Schemes Using Transitive Codes , 2017, IEEE Transactions on Information Theory.

[35]  Navin Kashyap,et al.  On the PIR capacity of MSR codes , 2019, ArXiv.

[36]  Siaw-Lynn Ng,et al.  Private Information Retrieval using Product-Matrix Minimum Storage Regenerating Codes , 2018, ArXiv.

[37]  Yunghsiang Sam Han,et al.  Update-Efficient Error-Correcting Product-Matrix Codes , 2013, IEEE Transactions on Communications.

[38]  Mehran Elyasi,et al.  A Cascade Code Construction for (n, k, d) Distributed Storage Systems , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[39]  Dimitris S. Papailiopoulos,et al.  Repair Optimal Erasure Codes Through Hadamard Designs , 2011, IEEE Transactions on Information Theory.

[40]  Soheil Mohajer,et al.  Bandwidth Adaptive & Error Resilient MBR Exact Repair Regenerating Codes , 2019, IEEE Transactions on Information Theory.

[41]  Chao Tian,et al.  Capacity-Achieving Private Information Retrieval Codes With Optimal Message Size and Upload Cost , 2018, IEEE Transactions on Information Theory.

[42]  Xiaohu Tang,et al.  A New Capacity-Achieving Private Information Retrieval Scheme With (Almost) Optimal File Length for Coded Servers , 2019, IEEE Transactions on Information Forensics and Security.

[43]  Camilla Hollanti,et al.  Private Information Retrieval Schemes with Regenerating Codes , 2018, ArXiv.

[44]  Tuvi Etzion,et al.  PIR array codes with optimal PIR rates , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).