Optical generation of matter qubit graph states

We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  X. Zou,et al.  Conditional quantum phase gate using distant atoms and linear optics (5 pages) , 2005 .

[3]  Bart De Moor,et al.  Invariants of the local Clifford group , 2005 .

[4]  A. Holevo Statistical structure of quantum theory , 2001 .

[5]  Bart De Moor,et al.  Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .

[6]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[7]  S. Barrett,et al.  Anticrossings in Förster coupled quantum dots , 2003, quant-ph/0309099.

[8]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[9]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[10]  E. Knill Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics , 2003, quant-ph/0307015.

[11]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[12]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[13]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[14]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[15]  C. Simon,et al.  Robust long-distance entanglement and a loophole-free bell test with ions and photons. , 2003, Physical review letters.

[16]  Conditional quantum logic using two atomic qubits , 2002, quant-ph/0206007.

[17]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[18]  Bart De Moor,et al.  Local invariants of stabilizer codes , 2004 .

[19]  P. Knight,et al.  Proposal for teleportation of an atomic state via cavity decay , 1999, quant-ph/9908004.

[20]  C. H. W. Barnes,et al.  Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity , 2002, cond-mat/0211689.

[21]  Thomas Legero,et al.  Quantum beat of two single photons. , 2004, Physical review letters.

[22]  N. Yoran,et al.  Deterministic linear optics quantum computation with single photon qubits. , 2003, Physical review letters.

[23]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[24]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[25]  C. Moura Alves,et al.  Efficient generation of graph states for quantum computation , 2005 .

[26]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[27]  J Eisert Optimizing linear optics quantum gates. , 2005, Physical review letters.

[28]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[29]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[30]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[31]  H. Kimble,et al.  Efficient engineering of multiatom entanglement through single-photon detections. , 2003, Physical review letters.

[32]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[33]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[34]  M. B. Plenio,et al.  Robust creation of entanglement between ions in spatially separate cavities. , 2003 .

[35]  B. De Moor,et al.  Local unitary versus local Clifford equivalence of stabilizer states , 2005 .

[36]  Noah Linden,et al.  Nonlocal content of quantum operations , 2001 .

[37]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[38]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[39]  Norbert Luetkenhaus,et al.  Upper bounds on success probabilities in linear optics , 2004, quant-ph/0403103.