Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning.

PURPOSE To develop standardized correlates of [18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) standard uptake value (SUV) to computed tomography (CT)-based window and levels. METHODS AND MATERIALS Nineteen patients with non-small-cell lung cancer who underwent imaging with positron emission tomography (PET) and CT were selected. A method of standardizing SUV within CT planning software was developed. A scale factor, determined by a sensitivity calibration of the PET scanner, converts voxel counts to activity per gram in tissue, allowing SUVs to be correlated to CT window and levels. A method of limiting interobserver variations was devised to enhance "edges" of regions of interest based on SUV thresholds. The difference in gross tumor volumes (GTVs) based on CT, PET SUV >or= 2.5, and regions of 40% maximum SUV were analyzed. RESULTS The mean SUV was 9.3. Mean GTV volumes were 253 cc for CT, 221 cc for SUV >or= 2.5, and 97 cc for SUV40%Max. Average volume difference was -259% between >or=2.5 SUV and CT and -162% between SUV40%Max and CT. Percent difference between GTV >or= 2.5 SUV and SUV40%Max remained constant beyond SUV > 7. For SUVs 4-6, best correlation among SUV thresholds occurred at volumes near 90 cc. Mean percent change from GTVs contoured according to CT (GTV CT) was -260% for GTV2.5 and -162% for GTV40%Max. Using the SUV40%Max threshold resulted in a significant alteration of volume in 98% of patients, while the SUV2.5 threshold resulted in an alteration of volume in 58% of patients. CONCLUSIONS Our method of correlating SUV to W/L thresholds permits accurate displaying of SUV in coregistered PET/CT studies. The optimal SUV thresholds to contour GTV depend on maximum tumor SUV and volume. Best correlation occurs with SUVs >6 and small volumes <100 cc. At SUVs >7, differences between the SUV threshold filters remain constant. Because of variability in volumes obtained by using SUV40%Max, we recommend using SUV >or= 2.5 for radiotherapy planning in non-small-cell lung cancer.

[1]  Peter A S Johnstone,et al.  FDG-PET in radiotherapy treatment planning: Pandora's box? , 2004, International journal of radiation oncology, biology, physics.

[2]  S. Kudoh,et al.  Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  M. Sandler,et al.  Turnaround: Time to Take a Look , 2001 .

[4]  M. Martel,et al.  Results following treatment to doses of 92.4 or 102.9 Gy on a phase I dose escalation study for non-small cell lung cancer. , 2004, Lung cancer.

[5]  J. Bonner,et al.  Unresectable or medically inoperable non-small cell lung cancer: the use of established clinical prognostic factors in making radiation-related treatment decisions. , 2000, Seminars in radiation oncology.

[6]  Sasa Mutic,et al.  Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. , 2004, International journal of radiation oncology, biology, physics.

[7]  Di Yan,et al.  Defining a radiotherapy target with positron emission tomography. , 2002, International journal of radiation oncology, biology, physics.

[8]  Gerald J. Kutcher,et al.  The impact of 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer , 2000 .

[9]  Arjan Bel,et al.  Definition of gross tumor volume in lung cancer: inter-observer variability. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  Sung-Cheng Huang,et al.  Anatomy of SUV , 2000 .

[11]  John L. Humm,et al.  Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[12]  J. Herndon,et al.  Improved survival in stage III non-small-cell lung cancer: seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial. , 1996, Journal of the National Cancer Institute.

[13]  G. V. von Schulthess,et al.  Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. , 2003, The New England journal of medicine.

[14]  S S Gambhir,et al.  A tabulated summary of the FDG PET literature. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  Curtis B Caldwell,et al.  The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. , 2002, International journal of radiation oncology, biology, physics.

[16]  K Schnabel,et al.  18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. , 1999, International journal of radiation oncology, biology, physics.

[17]  Bernard Dubray,et al.  Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  K. Nackaerts,et al.  18 fluoro-2-deoxyglucose positron emission tomography (PET) in the assessment of induction chemotherapy in stage IIIA-N2 NSCLC: a multi-center prospective study , 2001 .

[19]  P. Dupont,et al.  Potential use of FDG-PET scan after induction chemotherapy in surgically staged IIIa-N2 non-small-cell lung cancer: a prospective pilot study. The Leuven Lung Cancer Group. , 1998, Annals of oncology : official journal of the European Society for Medical Oncology.

[20]  M. Sasaki,et al.  The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography , 1996, European Journal of Nuclear Medicine.

[21]  V Kalff,et al.  F‐18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma , 2001, Cancer.

[22]  J C Rosenwald,et al.  CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. , 2001, International journal of radiation oncology, biology, physics.

[23]  J. Crowley,et al.  Southwest Oncology Group phase II trial of concurrent carboplatin, etoposide, and radiation for poor-risk stage III non-small-cell lung cancer. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  M. Kris,et al.  Promising survival with three-dimensional conformal radiation therapy for non-small cell lung cancer. , 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[25]  P. Dupont,et al.  Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  Marcel van Herk,et al.  Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. , 2006, International Journal of Radiation Oncology, Biology, Physics.

[27]  C B Caldwell,et al.  Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. , 2001, International journal of radiation oncology, biology, physics.

[28]  S M Larson,et al.  Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding , 1997, Cancer.

[29]  Danny Rischin,et al.  Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  C. Ling,et al.  Improved local control with higher doses of radiation in large-volume stage III non-small-cell lung cancer. , 2004, International journal of radiation oncology, biology, physics.

[31]  R. Fisher,et al.  Long-Term Follow-up of 153 Candidates for Definitive Radiation or Chemoradiation Therapy with Non-Small Cell Lung Cancer Who Were Staged by PET: Implications for Design of Future Randomized Trials , 2005 .