A low-voltage positive buck-boost converter using average-current-controlled techniques

A low-voltage positive buck-boost converter using average-current-controlled techniques is proposed in this paper. The benefit of the average-current-controlled circuit is that it does not need to use slope compensation, furthermore, it can reduce some power management problems such as cost, design complexity, size, and EMI. The advantages of the low-voltage operational amplifier are that it has lower power dynamic consumption and also can operate at low supply voltage. The proposed low-voltage positive buck-boost converter using the active-current-sensing circuit and average-current-controlled circuit techniques can work stably without slope compensation even when the duty cycle is higher than 50%. The proposed design circuit has been fabricated with TSMC 0.35μm CMOS 2P4M processes, the total chip area is 2.46 × 2.47mm2. When the supply voltage is 1.5V, the output voltage range is between 0.8V~3.3V.