PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures

Persistence diagrams, the most common descriptors of Topological Data Analysis, encode topological properties of data and have already proved pivotal in many different applications of data science. However, since the (metric) space of persistence diagrams is not Hilbert, they end up being difficult inputs for most Machine Learning techniques. To address this concern, several vectorization methods have been put forward that embed persistence diagrams into either finite-dimensional Euclidean space or (implicit) infinite dimensional Hilbert space with kernels. In this work, we focus on persistence diagrams built on top of graphs. Relying on extended persistence theory and the so-called heat kernel signature, we show how graphs can be encoded by (extended) persistence diagrams in a provably stable way. We then propose a general and versatile framework for learning vectorizations of persistence diagrams, which encompasses most of the vectorization techniques used in the literature. We finally showcase the experimental strength of our setup by achieving competitive scores on classification tasks on real-life graph datasets.

[1]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[2]  Steve Oudot,et al.  Eurographics Symposium on Geometry Processing 2015 Stable Topological Signatures for Points on 3d Shapes , 2022 .

[3]  Leonidas J. Guibas,et al.  A Topology Layer for Machine Learning , 2019, AISTATS.

[4]  Sara Kalisnik,et al.  Tropical Coordinates on the Space of Persistence Barcodes , 2019, Found. Comput. Math..

[5]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[6]  Yijian Xiang,et al.  RetGK: Graph Kernels based on Return Probabilities of Random Walks , 2018, NeurIPS.

[7]  Steve Oudot,et al.  A Framework for Differential Calculus on Persistence Barcodes , 2019, ArXiv.

[8]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[9]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[10]  Théo Lacombe,et al.  Understanding the Topology and the Geometry of the Persistence Diagram Space via Optimal Partial Transport , 2019, ArXiv.

[11]  Yasuaki Hiraoka,et al.  Persistent Homology and Materials Informatics , 2018 .

[12]  Yoshihiko Hasegawa,et al.  Scale-variant topological information for characterizing complex networks , 2018, Physical review. E.

[13]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[14]  Maks Ovsjanikov,et al.  Persistence-Based Structural Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Andreas Uhl,et al.  Deep Learning with Topological Signatures , 2017, NIPS.

[17]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[18]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[19]  Pablo G. Cámara,et al.  Topological methods for genomics: present and future directions. , 2017, Current opinion in systems biology.

[20]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.

[21]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[22]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[23]  Tamara Munzner,et al.  TopoLayout: Multilevel Graph Layout by Topological Features , 2007, IEEE Transactions on Visualization and Computer Graphics.

[24]  Leonidas J. Guibas,et al.  Stable and Informative Spectral Signatures for Graph Matching , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[26]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[27]  Emmanuel Müller,et al.  NetLSD: Hearing the Shape of a Graph , 2018, KDD.

[28]  Zhi-Li Zhang,et al.  Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs , 2017, NIPS.

[29]  Geng Li,et al.  Effective graph classification based on topological and label attributes , 2012, Stat. Anal. Data Min..

[30]  Qi Zhao,et al.  Learning metrics for persistence-based summaries and applications for graph classification , 2019, NeurIPS.

[31]  Rob Sturman,et al.  DNA microarrays: design principles for maximizing ergodic, chaotic mixing. , 2007, Small.

[32]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[33]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[34]  Lihui Chen,et al.  Capsule Graph Neural Network , 2018, ICLR.

[35]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[36]  Steve Oudot,et al.  Local Equivalence and Intrinsic Metrics between Reeb Graphs , 2017, SoCG.

[37]  Emilio Ferrara,et al.  Topological Features of Online Social Networks , 2011, ArXiv.

[38]  Makoto Yamada,et al.  Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams , 2018, NeurIPS.

[39]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[40]  Marc Niethammer,et al.  Learning Representations of Persistence Barcodes , 2019, J. Mach. Learn. Res..

[41]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[42]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..