Influence of one and two dimensional piezoelectric actuation on active vibration control of smart panels

The influence of directional piezoelectric actuation (d sub 31 not = d sub 32 ), and isotropic piezoelectric actuation (d sub 31 = d sub 32 ) on static deflection and control behaviour of aluminium panels is evaluated through numerical experiments. A four-node Piezo-Elastic field consistent plate element based on Mindlin-Reissner theory is developed and the finite element procedure is implemented in MATLAB platform. An active control scheme using Linear Quadratic Regulator is adopted in modal domain for the first mode control. The control analysis shows that the actuator efficiency is significantly modified with boundary effects. The directional actuation that actually represents the piezoelectric anisotropy has a better control performance compared to isotropic actuation. The results of the control study clearly indicate that if the d sub 32 - based actuation effect is minimised then better control can be achieved.

[1]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[2]  László P. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. I. Voltages Specified , 1994 .

[3]  Grant P. Steven,et al.  A Review on the Modelling of Piezoelectric Sensors and Actuators Incorporated in Intelligent Structures , 1998 .

[4]  W. Gawronski Dynamics and control of structures : a modal approach , 1998 .

[5]  K. Chandrashekhara,et al.  Adaptive Shape Control of Laminated Composite Plates Using Piezoelectric Materials , 1998 .

[6]  Grant P. Steven,et al.  A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation , 2000 .

[7]  Lin Chien-Chang,et al.  Finite element analysis on deflection control of plates with piezoelectric actuators , 1996 .

[8]  S. Raja,et al.  Piezothermoelastic Modeling and Active Vibration Control of Laminated Composite Beams , 1999 .

[9]  N. Hagood,et al.  Anisotropic Actuation with Piezoelectric Fiber Composites , 1995 .

[10]  N. Hagood,et al.  DEVELOPMENT OF PIEZOELECTRIC FIBER COMPOSITES FOR STRUCTURAL ACTUATION , 1993 .

[11]  P. K. Sinha,et al.  Finite Element Free Vibration Analysis of Smart Laminated Composite Beams and Plates , 1998 .

[12]  K. Rohwer,et al.  Piezothermoelastic Modelling and Active Vibration Control of Laminated Piezoelectric Composite Beam , 1999 .

[13]  Ron Barrett,et al.  Active plate and wing research using EDAP elements , 1992 .

[14]  Sunil K. Agrawal,et al.  Optimal Shape Control of Composite Thin Plates with Piezoelectric Actuators , 1998 .

[15]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[16]  G. Prathap The Finite Element Method in Structural Mechanics , 1993 .

[17]  Nesbitt W. Hagood,et al.  Manufacture of adaptive composite plates incorporating piezoelectric fiber composite plies , 1995 .

[18]  C. Fuller,et al.  Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plates , 1991 .