Optogenetic therapy for retinitis pigmentosa

Retinitis pigmentosa (RP) refers to a diverse group of progressive, hereditary diseases of the retina that lead to incurable blindness and affect two million people worldwide. Artificial photoreceptors constructed by gene delivery of light-activated channels or pumps (‘optogenetic tools’) to surviving cell types in the remaining retinal circuit has been shown to restore photosensitivity in animal models of RP at the level of the retina and cortex as well as behaviorally. The translational potential of this optogenetic approach has been evaluated using in vitro studies involving post-mortem human retinas. Here, we review recent developments in this expanding field and discuss the potential and limitations of optogenetic engineering for the treatment of RP.

[1]  Russell G Foster,et al.  Non-rod, non-cone photoreception in the vertebrates , 2002, Progress in Retinal and Eye Research.

[2]  Ernst Bamberg,et al.  Microbial rhodopsins in the spotlight , 2010, Current Opinion in Neurobiology.

[3]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[4]  Weng Tao,et al.  Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[6]  Edward S Boyden,et al.  Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[7]  David R Williams,et al.  Intravitreal injection of AAV2 transduces macaque inner retina. , 2011, Investigative ophthalmology & visual science.

[8]  Patrick Degenaar,et al.  Optobionic vision—a new genetically enhanced light on retinal prosthesis , 2009, Journal of neural engineering.

[9]  W. Hauswirth,et al.  Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. , 2008, Human gene therapy.

[10]  Tracey Warr,et al.  Circuitry , 2001 .

[11]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[12]  J. Nathans,et al.  A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina , 1998, Neuron.

[13]  C. Cepko,et al.  Electroporation and RNA interference in the rodent retina in vivo and in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[15]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[16]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[17]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[18]  A. J. Roman,et al.  Normal central retinal function and structure preserved in retinitis pigmentosa. , 2010, Investigative ophthalmology & visual science.

[19]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[20]  A. Cideciyan,et al.  Treatment possibilities for retinitis pigmentosa. , 2010, The New England journal of medicine.

[21]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[22]  P. Khaw,et al.  Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. , 2010, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[23]  R. Ali,et al.  Prospects for retinal gene replacement therapy. , 2009, Trends in genetics : TIG.

[24]  Kimio Takeuchi,et al.  Effect of Nilvadipine on Central Visual Field in Retinitis Pigmentosa: A 30-Month Clinical Trial , 2010, Ophthalmologica.

[25]  Dirk Trauner,et al.  LiGluR restores visual responses in rodent models of inherited blindness. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[26]  A. D. den Hollander,et al.  Molecular genetics of Leber congenital amaurosis. , 2002, Human molecular genetics.

[27]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[28]  B. Schobert,et al.  Halorhodopsin is a light-driven chloride pump. , 1982, The Journal of biological chemistry.

[29]  Jay Neitz,et al.  Gene therapy for red-green colour blindness in adult primates , 2009, Nature.

[30]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[31]  John G. Flannery,et al.  A Novel Adeno-Associated Viral Variant for Efficient and Selective Intravitreal Transduction of Rat Müller Cells , 2009, PloS one.

[32]  Edwin M Stone,et al.  Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics , 2008, Proceedings of the National Academy of Sciences.

[33]  Shomi S. Bhattacharya,et al.  Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait , 2010, Nature Reviews Genetics.

[34]  B. Roska,et al.  Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. , 2011, Human gene therapy.

[35]  G. Miesenböck,et al.  The Optogenetic Catechism , 2009, Science.

[36]  S. Shoham,et al.  Patterned Optical Activation of Retinal Ganglion Cells , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[37]  A. Milam,et al.  Histopathology of the human retina in retinitis pigmentosa. , 1998, Progress in retinal and eye research.

[38]  Eriko Sugano,et al.  Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. , 2010, Experimental eye research.

[39]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[41]  Konrad Lehmann,et al.  Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells , 2010, The Journal of Neuroscience.

[42]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[43]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[44]  P. Humphries,et al.  On the genetics of retinitis pigmentosa and on mutation‐independent approaches to therapeutic intervention , 2002, The EMBO journal.

[45]  B. Jones,et al.  Retinal remodeling during retinal degeneration. , 2005, Experimental eye research.

[46]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[47]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[48]  J. Golden,et al.  Safety and Efficacy of Subretinal Readministration of a Viral Vector in Large Animals to Treat Congenital Blindness , 2010, Science Translational Medicine.

[49]  Nick Tyler,et al.  Effect of gene therapy on visual function in Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[50]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[51]  R. Koenekoop Why do Cone Photoreceptors Die in Rod-Specific Forms of Retinal Degenerations? , 2009, Ophthalmic genetics.

[52]  Jean Bennett,et al.  Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[53]  F. Werblin,et al.  Differential Targeting of Optical Neuromodulators to Ganglion Cell Soma and Dendrites Allows Dynamic Control of Center-Surround Antagonism , 2011, Neuron.

[54]  C. Cepko,et al.  Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa , 2009, Nature Neuroscience.

[55]  Eberhart Zrenner,et al.  Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration , 2008, Molecular Neurobiology.

[56]  Kathleen A. Marshall,et al.  Safety and efficacy of gene transfer for Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[57]  José-Alain Sahel,et al.  Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling , 2010, Science Translational Medicine.

[58]  J. Sahel,et al.  Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse , 1999, Nature Medicine.

[59]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[60]  A. Vugler PROGRESS TOWARD THE MAINTENANCE AND REPAIR OF DEGENERATING RETINAL CIRCUITRY , 2010, Retina.

[61]  C. Mussolino,et al.  Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa , 2011, EMBO molecular medicine.

[62]  James Weiland,et al.  Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. , 2009, Progress in brain research.

[63]  Zhuo-Hua Pan,et al.  Ectopic Expression of Multiple Microbial Rhodopsins Restores ON and OFF Light Responses in Retinas with Photoreceptor Degeneration , 2009, The Journal of Neuroscience.

[64]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[65]  R. Masland,et al.  Remodeling of cone photoreceptor cells after rod degeneration in rd mice. , 2009, Experimental eye research.

[66]  Toru Ishizuka,et al.  Visual Properties of Transgenic Rats Harboring the Channelrhodopsin-2 Gene Regulated by the Thy-1.2 Promoter , 2009, PloS one.