Eigenvalue Isogeometric Approximations Based on B-Splines: Tools and Results

In this note, we focus on the spectral analysis of large matrices coming from isogeometric approximations based on B-splines of the eigenvalue problem $$ -(a(x)u'(x))'=\lambda b(x) u(x),\quad \quad x\in (0,1), $$ where u(0) and u(1) are given. When considering the collocation case, global distribution results for the eigenvalues are available in the literature, despite the nonsymmetry of the related matrices. Here we complement such results by providing precise estimates for the extremal eigenvalues and hence for the spectral conditioning of the resulting matrices. In the Galerkin setting, the matrices are symmetric and positive definite and a more complete analysis has been conducted in the literature. In the latter case we furnish a further procedure that gives a highly accurate estimate of all the eigenvalues, starting from the knowledge of the spectral distribution symbol. The techniques involve dyadic decomposition arguments, tools from the theory of generalized locally Toeplitz sequences, and basic extrapolation methods.

[1]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[2]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[3]  Stefano Serra-Capizzano,et al.  Are the eigenvalues of the B-spline IgA approximation of −Δu = λu known in almost closed form? , 2017 .

[4]  Hendrik Speleers,et al.  Are the eigenvalues of the B‐spline isogeometric analysis approximation of −Δu = λu known in almost closed form? , 2018, Numer. Linear Algebra Appl..

[5]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[6]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[7]  Stefano Serra Capizzano,et al.  Spectral and structural analysis of high precision finite difference matrices for elliptic operators , 1999 .

[8]  Stefano Serra Capizzano,et al.  Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..

[9]  Hendrik Speleers,et al.  Spectral analysis of matrices in isogeometric collocation methods , 2014 .

[10]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[11]  Hendrik Speleers,et al.  Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review , 2019, Archives of Computational Methods in Engineering.

[12]  Stefano Serra Capizzano,et al.  Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? , 2017, Numerical Algorithms.

[13]  Carlo Garoni,et al.  A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices , 2018, Numerical Algorithms.

[14]  Hendrik Speleers,et al.  Two-grid optimality for Galerkin linear systems based on B-splines , 2015, Comput. Vis. Sci..

[15]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[16]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[17]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[18]  S. Serra-Capizzano,et al.  Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices , 2018, BIT Numerical Mathematics.

[19]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[20]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..

[21]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : Theory and applications , 2017 .

[22]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[23]  R. Bhatia Matrix Analysis , 1996 .

[24]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[25]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..