How diradicaloid is a stable diradical?

[1]  H. Grützmacher,et al.  Bindungen mit ungerader Elektronenzahl und Biradikale in der Chemie der Hauptgruppenelemente , 2002 .

[2]  H. Grützmacher,et al.  Odd-electron bonds and biradicals in main group element chemistry. , 2002, Angewandte Chemie.

[3]  C. Cramer,et al.  Design optimization of 1,3-diphospha-2,4-diboretane diradicals. , 2002, Angewandte Chemie.

[4]  T. Majima,et al.  On the electronic character of localized singlet 2,2-dimethoxycyclopentane-1,3-diyl diradicals: substituent effects on the lifetime. , 2002, Journal of the American Chemical Society.

[5]  D. Bourissou,et al.  Singlet Diradicals: from Transition States to Crystalline Compounds , 2002, Science.

[6]  Anna I. Krylov,et al.  Perturbative corrections to the equation-of-motion spin–flip self-consistent field model: Application to bond-breaking and equilibrium properties of diradicals , 2002 .

[7]  Anna I. Krylov,et al.  Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model , 2001 .

[8]  Jon Baker,et al.  Q‐Chem 2.0: a high‐performance ab initio electronic structure program package , 2000, J. Comput. Chem..

[9]  A. H. Zewail Femtochemie: Studium der Dynamik der chemischen Bindung auf atomarer Skala mit Hilfe ultrakurzer Laserpulse (Nobel‐Aufsatz) , 2000 .

[10]  Martin Head-Gordon,et al.  A nonorthogonal approach to perfect pairing , 2000 .

[11]  W. Adam,et al.  Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals: The Exceedingly Long-Lived 2,2-Diethoxy-1,3-diphenylcyclopentane-1,3-diyl , 2000 .

[12]  Ernest R. Davidson,et al.  Diradical Character of the Cope Rearrangement Transition State , 2000 .

[13]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[14]  W. Nau,et al.  Photochemical Generation and Methanol Trapping of Localized 1,3 and 1,4 Singlet Diradicals Derived from a Spiroepoxy-Substituted Cyclopentane-1,3-diyl , 1998 .

[15]  C. Burda,et al.  Transient Spectroscopy of a Derivative of 2,2-Difluoro-1,3-diphenylcyclopentane-1,3-diylA Persistent Localized Singlet 1,3-Diradical , 1998 .

[16]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[17]  A. Zewail,et al.  The Validity of the "Diradical" Hypothesis: Direct Femtoscond Studies of the Transition-State Structures , 1994, Science.

[18]  J. A. Berson Diradicals: conceptual, inferential, and direct methods for the study of chemical reactions. , 1994, Science.

[19]  M. Gordon,et al.  The Inversion of Bicyclobutane and Bicyclodiazoxane , 1994 .

[20]  D. Hrovat,et al.  Ab Initio Calculations of the Potential Surfaces for the Lowest Singlet and Triplet States of 2,2-Difluorocyclopentane-1,3-diyl. The singlet Diradical Lies Below the Triplet , 1994 .

[21]  W. T. Borden,et al.  Violations of Hund's Rule in Non-Kekule Hydrocarbons: Theoretical Prediction and Experimental Verification , 1994 .

[22]  D. Hrovat,et al.  Ab initio calculations on the stereomutation of 1,1-difluorocyclopropane. Prediction of a substantial preference for coupled disrotation of the methylene groups , 1994 .

[23]  H. Schaefer,et al.  Closs's diradical: some surprises on the potential energy hypersurface , 1992 .

[24]  D. Dougherty Spin Control in Organic Molecules , 1991 .

[25]  W. Schoeller,et al.  Bond stretch isomerism in the silicon analogs of bicyclo[1.1.0]butane and of [1.1.1]propellane. Consequence of orbital nonhybridization , 1987 .

[26]  Eamonn F. Healy,et al.  Ab initio study of the chair Cope rearrangement of 1,5-hexadiene , 1987 .

[27]  Josef Michl,et al.  Neutral and Charged Biradicals, Zwitterions, Funnels in S1, and Proton Translocation: Their Role in Photochemistry, Photophysics, and Vision , 1987 .

[28]  Vlasta Bonačić-Koutecký,et al.  Neutrale und geladene Diradikale, Zwitterionen, Trichter auf der S1‐Hyperfläche und Protonentranslokation; ihre Bedeutung für den Sehvorgang und andere photochemische und photophysikalische Prozesse , 1987 .

[29]  J. Koutecký,et al.  OCCUPATION NUMBERS OF NATURAL ORBITALS AS A CRITERION FOR BIRADICAL CHARACTER. DIFFERENT KINDS OF BIRADICALS , 1980 .

[30]  H. Schaefer,et al.  Geometrical structure and energetics of Closs's diradical: 1,3-cyclopentadiyl , 1979 .

[31]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory , 1977 .

[32]  J. Michl,et al.  .pi., .pi.-Biradicaloid hydrocarbons. o-Xylylene. Photochemical preparation from 1,4-dihydrophthalazine in rigid glass, electric spectroscopy, and calculations , 1974 .

[33]  Roald Hoffmann,et al.  Interaction of orbitals through space and through bonds , 1971 .