Linear-Size hopsets with small hopbound, and constant-hopbound hopsets in RNC
暂无分享,去创建一个
[1] Aleksander Madry,et al. Computing Maximum Flow with Augmenting Electrical Flows , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[2] Christoph Lenzen,et al. Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models , 2016, DISC.
[3] Pranay Chaudhuri. Parallel algorithms - designs and analysis , 1992, Advances in computer science series.
[4] Danupon Nanongkai,et al. Distributed approximation algorithms for weighted shortest paths , 2014, STOC.
[5] David Peleg,et al. (1+epsilon, beta)-Spanner Constructions for General Graphs , 2004, SIAM J. Comput..
[6] Edith Cohen,et al. Polylog-time and near-linear work approximation scheme for undirected shortest paths , 1994, STOC '94.
[7] Boaz Patt-Shamir,et al. Distributed distance computation and routing with small messages , 2018, Distributed Computing.
[8] Michael Elkin,et al. Near-Optimal Distributed Routing with Low Memory , 2018, PODC.
[9] Boaz Patt-Shamir,et al. Fast Partial Distance Estimation and Applications , 2014, PODC.
[10] Mihalis Yannakakis,et al. High-probability parallel transitive closure algorithms , 1990, SPAA '90.
[11] Ludek Kucera,et al. Parallel Computation and Conflicts in Memory Access , 1982, Information Processing Letters.
[12] Michael Elkin,et al. Efficient algorithms for constructing (1+∊,β)-spanners in the distributed and streaming models , 2006, Distributed Computing.
[13] Mihalis Yannakakis,et al. High-Probability Parallel Transitive-Closure Algorithms , 1991, SIAM J. Comput..
[14] Lenore Cowen,et al. Near-linear cost sequential and distributed constructions of sparse neighborhood covers , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[15] Michael Elkin,et al. Computing almost shortest paths , 2001, TALG.
[16] Yijie Han,et al. Deterministic sorting in O(nloglogn) time and linear space , 2004, J. Algorithms.
[17] Philip N. Klein,et al. A Randomized Parallel Algorithm for Single-Source Shortest Paths , 1997, J. Algorithms.
[18] Thomas H. Spencer,et al. Time-Work Tradeoffs of the Single-Source Shortest Paths Problem , 1999, J. Algorithms.
[19] Monika Henzinger,et al. Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time , 2018, J. ACM.
[20] Edith Cohen. Using Selective Path-Doubling for Parallel Shortest-Path Computations , 1997, J. Algorithms.
[21] Gary L. Miller,et al. Improved Parallel Algorithms for Spanners and Hopsets , 2015, SPAA.
[22] Michael Elkin,et al. Distributed exact shortest paths in sublinear time , 2017, STOC.
[23] Aaron Bernstein,et al. Fully Dynamic (2 + epsilon) Approximate All-Pairs Shortest Paths with Fast Query and Close to Linear Update Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[24] Seth Pettie,et al. Thorup-Zwick Emulators are Universally Optimal Hopsets , 2017, Inf. Process. Lett..
[25] Jian Zhang,et al. Efficient algorithms for constructing (1+, varepsilon;, beta)-spanners in the distributed and streaming models. , 2004, PODC 2004.
[26] Seth Pettie,et al. A Hierarchy of Lower Bounds for Sublinear Additive Spanners , 2016, SODA.
[27] Christoph Lenzen,et al. Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford , 2015, SPAA.
[28] James B. Orlin,et al. Max flows in O(nm) time, or better , 2013, STOC '13.
[29] Mikkel Thorup,et al. Spanners and emulators with sublinear distance errors , 2006, SODA '06.
[30] Michael Elkin,et al. Linear-Size Hopsets with Small Hopbound, and Distributed Routing with Low Memory , 2017, ArXiv.
[31] Monika Henzinger,et al. Decremental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total Update Time , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[32] Piotr Sankowski,et al. Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in Õ (m10/7 log W) Time (Extended Abstract) , 2016, SODA.
[33] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t , 1993, FOCS.
[34] Monika Henzinger,et al. A deterministic almost-tight distributed algorithm for approximating single-source shortest paths , 2015, STOC.
[35] Mikkel Thorup,et al. Approximate distance oracles , 2001, JACM.
[36] Uzi Vishkin,et al. Finding the Maximum, Merging, and Sorting in a Parallel Computation Model , 1981, J. Algorithms.