Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12

The electronic band structures of pristine and Cr‐, Fe‐, Ni‐ or Mg‐doped Li4Ti5O12 have been calculated by first‐principles local‐density calculations. Analysis is carried out for the band gaps and density of states of these materials. It is shown that Cr or Mg doping can improve the electronic conduction of Li4Ti5O12, but Ni or Fe doping does not have such an effect. The mechanism for the improved electronic conduction is also proposed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Roberts Eglitis,et al.  Towards a practical rechargeable 5 V Li ion battery , 2005 .

[2]  S. Shi,et al.  Ab initio molecular-dynamics studies on LixMn2O4 as cathode material for lithium secondary batteries , 2004 .

[3]  P. Lippens,et al.  Electronic structure of the spinel Li4Ti5O12 studied by ab initio calculations and X-ray absorption spectroscopy , 2004 .

[4]  Yun‐Sung Lee,et al.  Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials , 2004 .

[5]  Liquan Chen,et al.  The effect of cation doping on spinel LiMn2O4: a first-principles investigation , 2003 .

[6]  V. Contini,et al.  Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications , 2001 .

[7]  H. Noguchi,et al.  Electrochemical Properties of LiFe5 O 8 ­ Li4Ti5 O 12 Solid Solution , 2001 .

[8]  A. Jansen,et al.  Studies of Mg-substituted Li{sub 4x4}Mg{sub x}Ti{sub 5}O{sub 12} spinel electrodes (0{le}x{le}1) for lithium batteries. , 2001 .

[9]  B. Scrosati,et al.  A new type of lithium-ion cell based on the Li4Ti5O12/Li2Co0.4Fe0.4Mn3.2O8 high-voltage, electrode combination , 2000 .

[10]  H. Tukamoto,et al.  Li1 + x Fe1 − 3x Ti1 + 2x O 4 (0.0 ≤ x ≤ 0.33) Based Spinels: Possible Negative Electrode Materials for Future Li‐Ion Batteries , 1999 .

[11]  H. Tukamoto,et al.  New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries , 1999 .

[12]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[13]  Paul A. Nelson,et al.  Development of a high-power lithium-ion battery , 1998 .

[14]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[15]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[16]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[17]  S. E. Dorris,et al.  Electrical Properties and Cation Valencies in Mn3O4 , 1988 .

[18]  D. Carter,et al.  Electrical properties and site distribution of cations in (MnyCo1−y)0.4Fe2.6O4 , 1988 .

[19]  D. S. Erickson,et al.  Nonstoichiometry, cation distribution, and electrical properties in Fe3O4‒CoFe2O4 at high temperature , 1985 .

[20]  A. Deschanvres,et al.  Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽ 0, 333 , 1971 .