Multilevel solution of augmented drift‐diffusion equations

Develops a finite element analysis and solution strategy for the augmented drift‐diffusion equations in semiconductors device theory using a multilevel scheme. Decouples the drift‐diffusion equations using Gummel iteration with incremental continuation in the applied voltage. Includes augmentation of the carrier mobility to address the issue of non‐local electric field effects (velocity overshoot) within the framework of the drift‐diffusion formulation. Gives comparison results with hydrodynamic and Monte Carlo models and sensitivity studies with respect to the augmentation parameter. Discretizes the equations with a special finite element method using bases of variable polynomial degree. Accomplishes solution of the resulting linear systems with a multilevel method using the basis degree as the grid level. Presents performance results and comparison studies with direct elimination.

[1]  S. Selberherr,et al.  A singular perturbation approach for the analysis of the fundamental semiconductor equations , 1983, IEEE Transactions on Electron Devices.

[2]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[3]  Peter Sandborn,et al.  A New Technique for Including Overshoot Phenomena in Conventional Drift-Diffusion Simulators , 1991 .

[4]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[5]  G. Carey,et al.  Multigrid solution and grid redistribution for convection–diffusion , 1989 .

[6]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[7]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[8]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[9]  Edwin C. Kan,et al.  Calculation of velocity overshoot in submicron devices using an augmented drift-diffusion model , 1991 .

[10]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[11]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[12]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[13]  K. Thornber,et al.  Current equations for velocity overshoot , 1982, IEEE Electron Device Letters.

[14]  G. F. Carey,et al.  SEMICONDUCTOR DEVICE MODELING USING FLUX UPWIND FINITE ELEMENTS , 1989 .

[15]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[16]  Graham F. Carey,et al.  Semiconductor device simulation using adaptive refinement and flux upwinding , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  P. J. Price On the flow equation in device simulation , 1988 .

[18]  M. Artaki Hot‐electron flow in an inhomogeneous field , 1988 .

[19]  Multidimensional augmented current equation including velocity overshoot , 1991, IEEE Electron Device Letters.