Lithium secondary batteries working at very high temperature: capacity fade and understanding of aging mechanisms

[1]  L. Castro,et al.  Aging Mechanisms of LiFePO4 // Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces , 2012 .

[2]  J. Pérès,et al.  Lithium-Ion Batteries Working at 85°C: Aging Phenomena and Electrode/Electrolyte Interfaces Studied by XPS , 2012 .

[3]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .

[4]  Yuji Kojima,et al.  Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated tem , 2011 .

[5]  Donald R. Sadoway,et al.  Graft copolymer-based lithium-ion battery for high-temperature operation , 2011 .

[6]  M. R. Palacín,et al.  High temperature electrochemical performance of nanosized LiFePO4 , 2010 .

[7]  Young Gyu Kim,et al.  Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode , 2009 .

[8]  Tsuyoshi Sasaki,et al.  Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries II. Diagnostic Analysis by Electron Microscopy and Spectroscopy , 2009 .

[9]  A. Yamada,et al.  Aging of the LiNi1 ∕ 2Mn1 ∕ 2O2 Positive Electrode Interface in Electrolyte , 2009 .

[10]  P. Biensan,et al.  Surface film formation on a carbonaceous electrode: Influence of the binder chemistry , 2009 .

[11]  K. Kubota,et al.  A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte , 2008 .

[12]  D. Aurbach,et al.  On the performance of graphitized meso carbon microbeads (MCMB)–meso carbon fibers (MCF) and synthetic graphite electrodes at elevated temperatures , 2007 .

[13]  Rémi Dedryvère,et al.  XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries , 2007 .

[14]  J. Tarascon,et al.  Development and implementation of a high temperature electrochemical cell for lithium batteries , 2007 .

[15]  R. Dedryvère,et al.  Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study , 2007 .

[16]  H. Noguchi,et al.  High temperature electrochemical behaviors of ramsdellite Li2Ti3O7 and its Fe-doped derivatives for lithium ion batteries , 2006 .

[17]  Kang Xu,et al.  An improved electrolyte for the LiFePO4 cathode working in a wide temperature range , 2006 .

[18]  Li Yang,et al.  A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling , 2006 .

[19]  C. Delmas,et al.  Coupled ion/electron hopping in Li(x)NiO2: a 7Li NMR study. , 2006, Inorganic chemistry.

[20]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[21]  Y. Ukyo,et al.  Performance of LiNiCoO2 materials for advanced lithium-ion batteries , 2005 .

[22]  T. Ohzuku,et al.  Electrochemical behaviors of LiCo 1/3Ni 1/3Mn 1/3O 2 in lithium batteries at elevated temperatures , 2005 .

[23]  J. Tarascon,et al.  Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. , 2005, The journal of physical chemistry. B.

[24]  J. Whitacre,et al.  Effect of Electrolyte Type upon the High-Temperature Resilience of Lithium-Ion Cells , 2005 .

[25]  Sylvie Grugeon,et al.  XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode , 2005 .

[26]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[27]  P. Biensan,et al.  7Li and 1 H MAS NMR Observation of Interphase Layers on Lithium Nickel Oxide Based Positive Electrodes of Lithium-Ion Batteries , 2004 .

[28]  N. Sato,et al.  Chemical transformation of the electrode surface of lithium-ion battery after storing at high temperature , 2003 .

[29]  B. Popov,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance , 2002 .

[30]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[31]  F. E. Little,et al.  Charge–discharge stability of graphite anodes for lithium-ion batteries , 2001 .

[32]  Doron Aurbach,et al.  A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate‐Dimethyl Carbonate Mixtures , 1996 .

[33]  J. J. Smith,et al.  International Meeting on Lithium Batteries. , 1983 .