Decoupling-based reconfigurable control of linear systems after actuator faults

In this paper, we provide the complete solution to the reconfigurable control problem after actuator faults in linear dynamical systems by means of disturbance decoupling approaches. The recovery of the closed-loop internal stability and the exact and approximate recovery of nominal tracking and performance are our main reconfiguration goals. We state necessary and sufficient conditions for the solvability of these problems. The approximate approach broadens the scope of potential applications. A thermofluid process is used to illustrate the exact and approximate methods.

[1]  Thomas Steffen,et al.  Control Reconfiguration of Dynamical Systems: Linear Approaches and Structural Tests , 2005 .

[2]  W. Chen,et al.  Adaptive actuator fault detection, isolation and accommodation in uncertain systems , 2007, Int. J. Control.

[3]  Jan Lunze,et al.  H∞-based virtual actuator synthesis for optimal trajectory recovery , 2009 .

[4]  Control Reconfiguration After Actuator Failures Using Disturbance Decoupling Methods , 2006, IEEE Transactions on Automatic Control.

[5]  Jan Lunze,et al.  Reconfigurable Control of Hammerstein Systems after Actuator Faults , 2008 .

[6]  Jan M. Maciejowski,et al.  MPC fault-tolerant flight control case study: flight 1862 , 2003 .

[7]  Jan C. Willems,et al.  Almost disturbance decoupling with internal stability , 1989 .

[8]  Marcel Staroswiecki,et al.  Fault Tolerant Control of the Boeing 747 Short-Period Mode Using the Admissible Model Matching Technique , 2006 .

[9]  Kenneth A. Loparo,et al.  Self-diagnosing intelligent motors: a key enabler for next generation manufacturing systems , 1999 .

[10]  J. Schumacher Compensator synthesis using (C,A,B)-pairs , 1980 .

[11]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2006 .

[12]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[13]  J. Willems Almost invariant subspaces: An approach to high gain feedback design--Part II: Almost conditionally invariant subspaces , 1981 .

[14]  Vincent D. Blondel,et al.  Fault tolerant control: a simultaneous stabilization result , 2004, IEEE Transactions on Automatic Control.

[15]  José A. De Doná,et al.  Actuator fault-tolerant control based on invariant set separation , 2008 .

[16]  Suresh M. Joshi,et al.  On matching conditions for adaptive state tracking control of systems with actuator failures , 2002, IEEE Trans. Autom. Control..

[17]  Jan Willems,et al.  Almost invariant subspaces: An approach to high gain feedback design , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[18]  Ari Ingimundarson,et al.  Using the Unfalsified Control Concept to achieve Fault Tolerance , 2008 .

[19]  Henrik Niemann ACTIVE FAULT DIAGNOSIS BY TEMPORARY DESTABILIZATION , 2006 .

[20]  M. J. Yazdanpanah,et al.  Reconfigurable control system design using eigenstructure assignment: static, dynamic and robust approaches , 2005 .

[21]  Michel Kinnaert,et al.  Diagnosis and Fault-tolerant Control, 2nd edition , 2006 .

[22]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[23]  Jan Lunze,et al.  Control reconfiguration of a thermofluid process by means of a virtual actuator , 2007 .

[24]  Panos J. Antsaklis,et al.  Reconfigurable control system design via perfect model following , 1992 .

[25]  Edmond A. Jonckheere,et al.  Propulsion control of crippled aircraft by H∞ model matching , 1999, IEEE Trans. Control. Syst. Technol..