X-ray photoelectron spectroscopy: Progress and perspectives

Abstract In this overview, I will briefly explore some of the basic concepts and observable effects in X-ray photoelectron spectroscopy, including references to some key first publications, as well as other papers in this issue that explore many of them in more detail. I will then turn to some examples of several present and promising future applications of this diverse technique. Some of the future areas explored will be the use chemical shifts, multiplet splittings, and hard X-ray excitation in the study of strongly correlated materials; photoelectron diffraction and holography for atomic structure determinations; standing wave and hard X-ray excited photoemission for probing buried interfaces and more bulk-like properties of complex materials; valence-band mapping with soft and hard X-ray excitation; and time-resolved measurements with the sample at high ambient pressures in the multi-torr regime.

[1]  W. Auwärter,et al.  Photoelectron diffraction for a look inside nanostructures , 2006 .

[2]  F. Grellner,et al.  Low-energy electron diffraction and X-ray photoelectron spectroscopy on the oxidation of cobalt (112̄0) , 1997 .

[3]  S. M. Goldberg,et al.  Photoionization cross-sections for atomic orbitals with random and fixed spatial orientation , 1981 .

[4]  Alvárez,et al.  Excitation of phonons and forward focusing in x-ray photoemission from the valence band. , 1996, Physical review. B, Condensed matter.

[5]  H. Siegbahn,et al.  Angular Distribution of Electrons in ESCA Spectra from a Single Crystal , 1970 .

[6]  Y. Gohshi,et al.  TOTAL REFLECTION X-RAY PHOTOELECTRON SPECTROSCOPY , 1995 .

[7]  D. F. Ogletree,et al.  A differentially pumped electrostatic lens system for photoemission studies in the millibar range , 2002 .

[8]  D. Tobias,et al.  Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions. , 2008, Physical chemistry chemical physics : PCCP.

[9]  H. Koinuma,et al.  Spectral evidence for inherent “dead layer” formation at La1−ySryFeO3/La1−xSrxMnO3 heterointerface , 2005 .

[10]  E. Wetli,et al.  X-Ray Photoelectron Diffraction in the Backscattering Geometry: A Key to Adsorption Sites and Bond Lengths at Surfaces , 1998 .

[11]  Shik Shin,et al.  Bulk band structure and Fermi surface of nickel : A soft x-ray angle-resolved photoemission study , 2006 .

[12]  H. Osawa,et al.  Hard X-ray Photoemission Spectroscopy Combined with Magnetic Circular Dichroism: Application to Fe3-xZnxO4 Spinel Oxide Thin Films , 2008 .

[13]  G. K. Walters,et al.  Compact low-energy Mott polarimeter for use in energy- and angle-resolved polarization studies , 1988 .

[14]  A. Dana,et al.  XPS measurements for probing dynamics of charging , 2010 .

[15]  L. Kipp,et al.  Vacuum space-charge effects in solid-state photoemission , 2009 .

[16]  C. Nordling,et al.  Energy splitting of core electron levels in paramagnetic molecules , 1969 .

[17]  C. R. Brundle,et al.  Electron Spectroscopy: Theory, Techniques and Applications , 1979 .

[18]  H. Siegbahn,et al.  A new method for ESCA studies of liquid-phase samples , 1981 .

[19]  A. Barbier,et al.  Hard X-ray resonant electronic spectroscopy in transition metal oxides , 2005 .

[20]  R. Bachrach Synchrotron Radiation Research , 1992 .

[21]  A. Nilsson Applications of core level spectroscopy to adsorbates , 2002 .

[22]  R. Denecke Surface chemistry studied by in situ X-ray photoelectron spectroscopy , 2005 .

[23]  C. Nordling,et al.  Band structure of metals studied by ESCA , 1970 .

[24]  Burton L. Henke,et al.  Ultrasoft-X-Ray Reflection, Refraction, and Production of Photoelectrons (100-1000-eV Region) , 1972 .

[25]  S. Imada,et al.  Strong Circular Dichroism in Photoelectron Diffraction from Nonchiral, Nonmagnetic Material–Direct Observation of Rotational Motion of Electrons , 1993 .

[26]  R. Bachrach Synchrotron radiation research : advances in surface and interface science , 1992 .

[27]  Wilfried Wurth,et al.  Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers , 2008 .

[28]  D. P. Woodruff Surface structure determination using x-ray standing waves , 2005 .

[29]  H. Wabnitz,et al.  The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations , 2009 .

[30]  L. Schlapbach,et al.  X-ray photoelectron and Auger electron diffraction study of diamond and graphite surfaces , 1994 .

[31]  S. Imada,et al.  Three-dimensional bulk fermiology of CeRu2Ge2 in the paramagnetic phase by soft x-ray hnu-dependent (700-860 eV) ARPES. , 2007, Physical review letters.

[32]  M. Hove,et al.  The growth of iron oxide films on Pt(111): a combined XPD, STM, and LEED study , 1998 .

[33]  A. Goldoni,et al.  Bulk Fermi surface mapping with high-energy angle-resolved photoemission , 2003 .

[34]  S. Marchesini,et al.  Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3 , 2008 .

[35]  M. Grunze,et al.  In situ X‐ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar , 1990 .

[36]  Akio Kotani,et al.  Core Level Spectroscopy of Solids , 2008 .

[37]  Porous Semiconductor Chalcogenide Aerogels , 2005 .

[38]  K. Siegbahn ESCA : atomic, molecular and solid state structure studied by means of electron spectroscopy , 1967 .

[39]  Kirschner,et al.  Magnetic x-ray dichroism in core-level photoemission from ferromagnets. , 1990, Physical review letters.

[40]  Charles S. Fadley,et al.  Angle-resolved x-ray photoelectron spectroscopy , 1984 .

[41]  D. A. Shirley,et al.  Multiplet splitting of core-electron binding energies in transition-metal ions , 1969 .

[42]  A. Föhlisch,et al.  Vibrational fine structure in core level photoelectron lines of adsorbed molecules: System dependent effects , 1999 .

[43]  S. Yang Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission , 2008 .

[44]  Z. Hussain,et al.  Temperature-dependent angle-resolved x-ray photoemission study of the valence bands of single-crystal tungsten: Evidence for direct transitions and phonon effects , 1980 .

[45]  D. R. Penn,et al.  Surface Sensitivity of Auger-Electron Spectroscopy and X-ray Photoelectron Spectroscopy , 2011 .

[46]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[47]  D. F. Ogletree,et al.  Methanol Oxidation on a Copper Catalyst Investigated Using in Situ X-ray Photoelectron Spectroscopy† , 2004 .

[48]  M. Hove,et al.  Multiatom resonant photoemission , 2001 .

[49]  C. Fadley X-ray photoelectron spectroscopy : From origins to future directions , 2009 .

[50]  M. Weinelt,et al.  A two-photon photoemission study of spin-dependent electron dynamics , 2006 .

[51]  V. G. Yarzhemsky,et al.  PHOTOELECTRON ANGULAR DISTRIBUTION PARAMETERS FOR ELEMENTS Z=55 to Z=100 IN THE PHOTOELECTRON ENERGY RANGE 100–5000 eV , 2001 .

[52]  J. Bozek,et al.  Photon Energy Dependence of the 1{sigma}{sub u}/1{sigma}{sub g} Intensity Ratio in Carbon 1s Photoelectron Spectroscopy of Ethyne , 1999 .

[53]  H. Freund,et al.  Monolayer iron oxide film on platinum promotes low temperature CO oxidation , 2009 .

[54]  J. Braun The theory of angle-resolved ultraviolet photoemission and its applications to ordered materials , 1996 .

[55]  K. Kim X-ray-photoelectron spectroscopic studies of the electronic structure of CoO , 1975 .

[56]  Y. Takeichi,et al.  High efficiency and high energy-resolution spin-polarized photoemission spectrometer , 2009 .

[57]  Sven Döring,et al.  Standing-wave excited photoemission experiments on Si/MoSi2 multilayer mirrors in the soft x-ray regime: An analytical modeling approach , 2009 .

[58]  M. Suemitsu,et al.  Real-time core-level spectroscopy of initial thermal oxide on Si(100) , 1998 .

[59]  Fulvio Parmigiani,et al.  Experimental evidence of above-threshold photoemission in solids. , 2005, Physical review letters.

[60]  L. Wiebusch,et al.  High-efficiency spin polarimetry by very-low-energy electron scattering from Fe(100) for spin-resolved photoemission , 2002 .

[61]  LETTER TO THE EDITOR: Relationship of tunnelling magnetoresistance and buried-layer densities of states as derived from standing-wave excited photoemission , 2006 .

[62]  H. Ebert,et al.  Band mapping in higher-energy x-ray photoemission: Phonon effects and comparison to one-step theory , 2008 .

[63]  S. Heinze,et al.  Surface electronic structure of Fe(110): the importance of surface resonances , 2001 .

[64]  A. Locatelli,et al.  Synchrotron-based photoelectron microscopy , 2009 .

[65]  S. Marchesini,et al.  Correction of non-linearity effects in detectors for electron spectroscopy , 2004, physics/0412117.

[66]  R. Opila,et al.  Report on the 47th IUVSTA Workshop ‘Angle‐Resolved XPS: the current status and future prospects for angle‐resolved XPS of nano and subnano films’ , 2009 .

[67]  D. P. Woodruff Adsorbate structure determination using photoelectron diffraction: Methods and applications , 2007 .

[68]  Z. Hussain,et al.  Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy , 2008 .

[69]  Zahid Hussain,et al.  The premelting of ice studied with photoelectron spectroscopy , 2002 .

[70]  C. Fadley X-ray photoelectron spectroscopy and diffraction in the hard X-ray regime : Fundamental considerations and future possibilities , 2005 .

[71]  J. Menchero One-electron theory of core-level photoemission from ferromagnets , 1998 .

[72]  R. Guillemin,et al.  Experimental investigation of nondipole effects in photoemission at the advanced light source , 2005 .

[73]  T. Ishikawa,et al.  Electronic structure of strained ( La 0.85 Ba 0.15 ) Mn O 3 thin films with room-temperature ferromagnetism investigated by hard x-ray photoemission spectroscopy , 2006 .

[74]  T. Matsushita,et al.  Application of atomic stereomicroscope to surface science , 2003 .

[75]  A. Verdini,et al.  Resonant photoelectron and photoelectron diffraction across the Fe L3 edge of Fe3O4 , 2010 .

[76]  M. Salmeron Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology , 2008 .

[77]  J. Jenkin,et al.  The development of x-ray photoelectron spectroscopy: 1900–1960 , 1977 .

[78]  D. Hamann,et al.  Phonon Broadening of X-Ray Photoemission Linewidths. , 1974 .

[79]  T. Ishikawa,et al.  Recoil effect of photoelectrons in the Fermi edge of simple metals. , 2008, Physical review letters.

[80]  D. A. Shirley,et al.  Multiplet Splitting of Metal-Atom Electron Binding Energies , 1970 .

[81]  G. Schumacher,et al.  X-ray measurements with micro- and nanoresolution at BESSY ☆ , 2007 .

[82]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range , 2011 .

[83]  Bernd Winter,et al.  Liquid microjet for photoelectron spectroscopy , 2009 .

[84]  H. Ebert,et al.  Soft x-ray angle-resolved photoemission spectroscopy on Ag(001): Band mapping, photon momentum effects, and circular dichroism , 2008 .

[85]  A. Verdini,et al.  Defects at the TiO2(100) surface probed by resonant photoelectron diffraction , 2007 .

[86]  Herman,et al.  Valence photoelectron diffraction and direct-transition effects. , 1992, Physical review letters.

[87]  K. Siegbahn ESCA applied to free molecules , 1969 .

[88]  K. Siegbahn electron spectroscopy for chemical analysis , 1964, Catalysis from A to Z.

[89]  H. Siegmann,et al.  Observation of Electron Polarization in Photoemission , 1969 .

[90]  C. Powell,et al.  Formalism and parameters for quantitative surface analysis by Auger electron spectroscopy and x-ray photoelectron spectroscopy , 1993 .

[91]  L. Esaki,et al.  Disorder-Activated Acoustic Mode in Raman Spectrum of Ga x Al 1-x As , 1972 .

[92]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[93]  D. A. Shirley,et al.  Electronic Densities of States from X-Ray Photoelectron Spectroscopy. , 1970, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[94]  F. J. García de abajo,et al.  High-energy photoelectron diffraction: model calculations and future possibilities , 2008, 0807.1701.

[95]  C. Fadley Atomic‐level characterization of materials with core‐ and valence‐level photoemission: basic phenomena and future directions , 2008 .

[96]  M. Hove,et al.  Solid-state photoemission and related methods : theory and experiment , 2003 .

[97]  G. Meddeler,et al.  A next generation, high speed detector for synchrotron radiation research , 2004, IEEE Transactions on Nuclear Science.

[98]  V. G. Yarzhemsky,et al.  Non-dipole second order parameters of the photoelectron angular distribution for elements Z = 1–100 in the photoelectron energy range 1–10 keV , 2006 .

[99]  M. Suemitsu,et al.  Real-time measurements of Si 2 p core level during dry oxidation of Si(100) , 1998 .

[100]  Xiaoping Zhou,et al.  Space charge effect and mirror charge effect in photoemission spectroscopy , 2004, cond-mat/0410006.

[101]  M. Krause Photo-Ionization of Krypton Between 300 and 1500 eV. Relative Subshell Cross Sections and Angular Distributions of Photoelectrons , 1969 .

[102]  Alexander M. Bradshaw,et al.  XPEEM WITH ENERGY-FILTERING: ADVANTAGES AND FIRST RESULTS FROM THE SMART PROJECT , 2002 .

[103]  X-Ray Standing-Wave Investigations of Valence Electronic Structure , 2001 .

[104]  Stephan Hüfner,et al.  Photoelectron Spectroscopy: Principles and Applications , 2010 .

[105]  M. Seah,et al.  Repeatable intensity calibration of an X-ray photoelectron spectrometer , 2006 .

[106]  Westphal,et al.  Circular dichroism in the angular distribution of photoelectrons from oriented CO molecules. , 1989, Physical review letters.

[107]  H. Siegbahn,et al.  Distribution of ions in subsurface layers of liquid solutions studied by ARXPS , 1993 .

[108]  A. Cassimi,et al.  Photoelectron diffraction mapping: molecules illuminated from within. , 2001, Physical review letters.

[109]  M. Seah,et al.  SIGNAL LINEARITY IN XPS COUNTING SYSTEMS , 1999 .

[110]  M. Veenendaal Competition between screening channels in core-level x-ray photoemission as a probe of changes in the ground-state properties of transition-metal compounds , 2006 .

[111]  Xiao,et al.  Circular dichroism in the angular distribution of core photoelectrons from Si(001): A photoelectron-diffraction analysis. , 1995, Physical review. B, Condensed matter.

[112]  A. Cassimi,et al.  Photoelectron Diffraction Mapping , 2001 .

[113]  M. Kiskinova,et al.  Real-time X-ray photoelectron spectroscopy of surface reactions , 2003 .

[114]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[115]  U. Hergenhahn,et al.  Symmetry-Selective Observation of the N 1s Shape Resonance in N2 , 2001 .

[116]  T. Greber Exploiting the photoelectron source wave with near-node photoelectron holography , 2001 .

[117]  U. Hergenhahn TOPICAL REVIEW: Vibrational structure in inner shell photoionization of molecules , 2004 .

[118]  P. Torelli,et al.  Temperature-dependent electronic structure of the colossal magnetoresistive manganite La(0.7)Sr(0.3)MnO(3) from hard x-ray photoemission , 2008 .

[119]  Photoelectron and x-ray holography by contrast: enhancing image quality and dimensionality , 2001 .

[120]  Keisuke L. I. Kobayashi Hard X-ray photoemission spectroscopy , 2009 .

[121]  P. A. Brühwiler,et al.  A very high resolution electron spectrometer , 1994 .

[122]  S Marchesini,et al.  Direct observation of high-temperature polaronic behavior in colossal magnetoresistive manganites. , 2004, Physical review letters.

[123]  I. Hertel,et al.  Hydrogen bonds in liquid water studied by photoelectron spectroscopy. , 2007, The Journal of chemical physics.

[124]  G. Lilienkamp,et al.  Spectromicroscopy in a low energy electron microscope , 1997 .

[125]  H. Akinaga,et al.  Hard X-ray Photoelectron Emission Microscopy as Tool for Studying Buried Layers , 2006 .

[126]  Charles S. Fadley,et al.  X-Ray Photoelectron Spectroscopic Study of Iron, Cobalt, Nickel, Copper, and Platinum , 1968 .

[127]  I. Lindau,et al.  Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103 , 1985 .

[128]  M A Van Hove,et al.  Differential photoelectron holography: a new approach for three-dimensional atomic imaging. , 2002, Physical review letters.

[129]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths , 2005 .

[130]  M. Rossi In-Situ observation of wet oxidation kinetics on Si (100) via ambient pressure x-ray photoemission spectroscopy , 2008 .

[131]  A. Higashiya,et al.  Bulk sensitive photoelectron spectroscopy with soft and hard X-rays: Soft X-ray ARPES toward high resolution HAXPES , 2005 .