Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites

Abstract Raman spectra of highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes are carried out at different laser powers and different excitation energies. The effects of the laser heating and the double resonance Raman scattering are investigated as a prerequisite for a correct interpretation of the Raman spectra of carbon materials-based composites. The Raman spectra of multilayer graphene and multiwall carbon nanotubes embedded in a silicone matrix are also analyzed in an attempt to get some insights into the polymer–filler interface.

[1]  S. Pandini,et al.  Enhancement of mechanical reinforcement due to hybrid filler networking promoted by an organoclay in hydrocarbon-based nanocomposites , 2012 .

[2]  M. S. Dresselhaus,et al.  Observations of the D-band feature in the Raman spectra of carbon nanotubes , 2001 .

[3]  T. Das,et al.  Graphene-Based Polymer Composites and Their Applications , 2013 .

[4]  Reinhard Niessner,et al.  Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information , 2005 .

[5]  Z. Gu,et al.  Effects of intense laser irradiation on Raman intensity features of carbon nanotubes , 2002 .

[6]  Jun Luo,et al.  Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene , 2012 .

[7]  H. Son,et al.  Laser-heating effect on raman spectra of individual suspended single-walled carbon nanotubes , 2007 .

[8]  Zhennan Gu,et al.  Temperature dependence of the Raman spectra of carbon nanotubes , 1998 .

[9]  J. Maultzsch,et al.  Raman scattering in carbon nanotubes revisited , 2002 .

[10]  L. Ley,et al.  Origin of the D peak in the Raman spectrum of microcrystalline graphite , 1998 .

[11]  C. Belin,et al.  Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers , 2008 .

[12]  Saibal Roy,et al.  Thermal properties of single walled carbon nanotube‐silicone nanocomposites , 2008 .

[13]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[14]  R. Young,et al.  A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites , 2004 .

[15]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[16]  L. Bokobza,et al.  Vibrational and electrical investigations of a uniaxially stretched polystyrene/carbon nanotube composite , 2013 .

[17]  H. Daniel Wagner,et al.  Single-wall carbon nanotubes as molecular pressure sensors , 2000 .

[18]  P. Degée,et al.  CH‐π Interactions as the Driving Force for Silicone‐Based Nanocomposites with Exceptional Properties , 2008 .

[19]  L. Bokobza,et al.  Raman spectroscopic characterization of multiwall carbon nanotubes and of composites , 2012 .

[20]  Pierre J. Carreau,et al.  Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties , 2010 .

[21]  Lifeng Liu,et al.  The intrinsic temperature effect of Raman spectra of double-walled carbon nanotubes , 2004 .

[22]  S. Pandini,et al.  The Role of CNTs in Promoting Hybrid Filler Networking and Synergism with Carbon Black in the Mechanical Behavior of Filled Polyisoprene , 2013 .

[23]  M. Taravillo,et al.  Raman modes and Grüneisen parameters of graphite under compressive biaxial stress , 2012 .

[24]  Liliane Bokobza,et al.  MULTIWALL CARBON NANOTUBE ELASTOMERIC COMPOSITES: A REVIEW , 2007 .

[25]  Ajayan,et al.  Temperature-dependent vibrational spectra of carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[26]  C. Macosko,et al.  Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites , 2008 .

[27]  Lei Gong,et al.  Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite , 2010, Advanced materials.

[28]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  L. Bokobza Enhanced electrical and mechanical properties of multiwall carbon nanotube rubber composites , 2012 .

[30]  E. Leroy,et al.  Effect of filling mixtures of sepiolite and a surface modified fumed silica on the mechanical and swelling behavior of a styrene-butadiene rubber , 2009 .

[31]  Riichiro Saito,et al.  Characterizing carbon nanotube samples with resonance Raman scattering , 2003 .

[32]  Double resonance Raman spectroscopy of single-wall carbon nanotubes , 2003 .

[33]  A. Jorio Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and Nanometrology , 2012 .

[34]  J. Laureyns,et al.  Raman microprobe studies on carbon materials , 1994 .

[35]  R. Saito,et al.  Effect of domain boundaries on the Raman spectra of mechanically strained graphene. , 2012, ACS nano.

[36]  R. Ruoff,et al.  Graphene-based polymer nanocomposites , 2011 .

[37]  D. Olevik Laser induced effects in carbon nanotubes : implications for Raman characterization of functionalized systems , 2009 .

[38]  Christopher W. Macosko,et al.  Processing-property relationships of polycarbonate/graphene composites , 2009 .

[39]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[40]  Christian Thomsen,et al.  Resonant Raman spectroscopy of nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  A. Grüneis,et al.  Double resonant raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes , 2002 .

[42]  D. Batchelder,et al.  Strain dependences of the first- and second-order Raman spectra of carbon fibres , 1988 .

[43]  G. Kourouklis,et al.  Temperature effects in the Raman spectra of bundled single-wall carbon nanotubes , 2009 .

[44]  A. D. Prins,et al.  Carbon nanotubes : from molecular to macroscopic sensors , 2000 .

[45]  Z. Gu,et al.  Temperature dependence of the Raman spectra of single-wall carbon nanotubes , 2000 .

[46]  Manuel Dossot,et al.  Stability of carbon nanotubes to laser irradiation probed by Raman spectroscopy , 2008 .

[47]  M. Mazurkiewicz,et al.  Laser induced temperature effects in multi‐walled carbon nanotubes probed by Raman spectroscopy , 2012 .

[48]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[49]  W. Yim,et al.  Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi‐walled carbon nanotubes as a nanofiller , 2007 .

[50]  H. Brünig,et al.  Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning , 2005 .

[51]  H. Wagner,et al.  Mechanical properties of carbon nanoparticle-reinforced elastomers , 2003 .

[52]  Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy , 2001 .

[53]  B. Bresson,et al.  Mechanical and AFM investigations of elastomers filled with multiwall carbon nanotubes , 2012 .

[54]  M. Dresselhaus,et al.  ORIGIN OF DISPERSIVE EFFECTS OF THE RAMAN D BAND IN CARBON MATERIALS , 1999 .

[55]  Y. Ozaki,et al.  Laser heating effect on Raman spectra of styrene–butadiene rubber/multiwalled carbon nanotube nanocomposites , 2012 .

[56]  M. Taravillo,et al.  Raman characterization of carbon materials under non-hydrostatic conditions , 2011 .

[57]  U. Waghmare,et al.  Temperature effects on the Raman spectra of graphenes: dependence on the number of layers and doping , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  S. Bose,et al.  Recent advances in graphene based polymer composites , 2010 .

[59]  Shoushan Fan,et al.  Electrothermal actuation based on carbon nanotube network in silicone elastomer , 2008 .