Shape‐Memory Natural Rubber: An Exceptional Material for Strain and Energy Storage

[1]  Metin Tolan,et al.  Stress-induced stabilization of crystals in shape memory natural rubber. , 2013, Macromolecular rapid communications.

[2]  J. Cui,et al.  Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming , 2010 .

[3]  J. Rault,et al.  Crystallization and Melting Processes in Vulcanized Stretched Natural Rubber , 2003 .

[4]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[5]  T. Xie Tunable polymer multi-shape memory effect , 2010, Nature.

[6]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[7]  T. Xie,et al.  Strain‐Based Temperature Memory Effect for Nafion and Its Molecular Origins , 2011 .

[8]  Frank Katzenberg,et al.  Superheated rubber for cold storage. , 2011, Advanced materials.

[9]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[10]  T. Ware,et al.  High‐Strain Shape‐Memory Polymers , 2010 .

[11]  Shinzo Kohjiya,et al.  New Insights into Structural Development in Natural Rubber during Uniaxial Deformation by In Situ Synchrotron X-ray Diffraction , 2002 .

[12]  M. Maugey,et al.  Shape and Temperature Memory of Nanocomposites with Broadened Glass Transition , 2007, Science.

[13]  Andreas Lendlein,et al.  Temperature‐Memory Polymer Networks with Crystallizable Controlling Units , 2011, Advanced materials.

[14]  R. Rivlin,et al.  LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS. I. FUNDAMENTAL CONCEPTS , 1997 .

[15]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[16]  F. Katzenberg,et al.  Stress-induced melting of crystals in natural rubber: a new way to tailor the transition temperature of shape memory polymers. , 2012, Macromolecular rapid communications.

[17]  Y. Fukahori “Mechanism of the self-reinforcement of cross-linked NR generated through the strain-induced crystallization” , 2010 .

[18]  T. Xie Recent advances in polymer shape memory , 2011 .

[19]  A. Lendlein,et al.  Mechanically active scaffolds from radio‐opaque shape‐memory polymer‐based composites , 2011 .

[20]  Melodie F Metzger,et al.  Photothermal properties of shape memory polymer micro‐actuators for treating stroke * , 2002, Lasers in surgery and medicine.

[21]  A. Lendlein,et al.  Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Gall,et al.  Impact of shape-memory programming on mechanically-driven recovery in polymers , 2011 .

[23]  Isidor Kirshenbaum,et al.  The Vapor Pressure and Heat of Vaporization of N15 , 1941 .

[24]  D. E. Roberts,et al.  The Melting Temperature of Natural Rubber Networks , 1960 .

[25]  P. Flory,et al.  STATISTICAL MECHANICS OF CROSS-LINKED POLYMER NETWORKS II. SWELLING , 1943 .

[26]  Jun Yu Li,et al.  Shape‐Memory Effects in Polymer Networks Containing Reversibly Associating Side‐Groups , 2007 .

[27]  S Rapp,et al.  Determination of recovery energy densities of shape memory polymers via closed-loop, force-controlled recovery cycling , 2010 .

[28]  Andreas Lendlein,et al.  Characterization Methods for Shape-Memory Polymers , 2009 .

[29]  Tao Xie,et al.  Significant Impact of Thermo-Mechanical Conditions on Polymer Triple-Shape Memory Effect , 2011 .

[30]  W. F. Watson,et al.  Viscosity-equilibrium swelling correlations for natural rubber , 1958 .

[31]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[32]  Yang-Tse Cheng,et al.  Remote Controlled Multishape Polymer Nanocomposites with Selective Radiofrequency Actuations , 2011, Advanced materials.

[33]  N. Goo,et al.  Electroactive Shape‐Memory Polyurethane Composites Incorporating Carbon Nanotubes , 2005 .

[34]  S. Zhang,et al.  pH-induced shape-memory polymers. , 2012, Macromolecular rapid communications.

[35]  H. Frey,et al.  Branched Versus Linear Polyisoprene: Flory–Huggins Interaction Parameters for their Solutions in Cyclohexane , 2009 .