Qubit metrology of ultralow phase noise using randomized benchmarking

A precise measurement of dephasing over a range of timescales is critical for improving quantum gates beyond the error correction threshold. We present a metrological tool, based on randomized benchmarking, capable of greatly increasing the precision of Ramsey and spin echo sequences by the repeated but incoherent addition of phase noise. We find our SQUID-based qubit is not limited by $1/f$ flux noise at short timescales, but instead observe a telegraph noise mechanism that is not amenable to study with standard measurement techniques.

[1]  R. Barends,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2014, Nature.

[2]  J. P. Dehollain,et al.  Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  A. Lupascu,et al.  Dynamics of parametric fluctuations induced by quasiparticle tunneling in superconducting flux qubits , 2014, 1406.7350.

[4]  P. Bertet,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[5]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[6]  R. Barends,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[7]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[8]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[9]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[10]  Yasunobu Nakamura,et al.  Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution , 2013, Nature Communications.

[11]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[12]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[13]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[14]  R. N. Schouten,et al.  Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit , 2012, Nature Communications.

[15]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[16]  Daniel Sank,et al.  Flux noise probed with real time qubit tomography in a Josephson phase qubit. , 2012, Physical review letters.

[17]  S. Girvin,et al.  Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED , 2012, 1206.1265.

[18]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[19]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[20]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[21]  Yasunobu Nakamura,et al.  Spectroscopy of low-frequency noise and its temperature dependence in a superconducting qubit , 2012, 1201.5665.

[22]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[23]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[24]  John M. Martinis,et al.  Resonator-zero-qubit architecture for superconducting qubits , 2011, 1105.3997.

[25]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[26]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[27]  Erik Lucero,et al.  Reduced phase error through optimized control of a superconducting qubit , 2010, 1007.1690.

[28]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[29]  Michael J. Biercuk,et al.  Experimental Uhrig Dynamical Decoupling using Trapped Ions , 2009, 0902.2957.

[30]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[31]  John M Martinis,et al.  Magnetism in SQUIDs at millikelvin temperatures. , 2008, Physical review letters.

[32]  Erik Lucero,et al.  1/f Flux noise in Josephson phase qubits. , 2007, Physical review letters.

[33]  R. B. Blakestad,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[34]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[35]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[36]  B L Altshuler,et al.  Non-Gaussian low-frequency noise as a source of qubit decoherence. , 2005, Physical review letters.

[37]  G. Ithier,et al.  Decoherence in a superconducting quantum bit circuit , 2005, cond-mat/0508588.

[38]  Y. Makhlin,et al.  Low- and high-frequency noise from coherent two-level systems. , 2004, Physical review letters.

[39]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[40]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[41]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[42]  A. Cottet,et al.  Implémentation d'un bit quantique dans un circuit supraconducteur / Implementation of a quantum bit in a superconducting circuit , 2002 .

[43]  G. Falci,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[44]  J. Clarke,et al.  Low‐frequency noise in dc superconducting quantum interference devices below 1 K , 1987 .

[45]  E. Hahn,et al.  Spin Echoes , 2011 .

[46]  G. Falci,et al.  1/f Noise in Josephson Qubits , 2002 .