Constrained estimation and likelihood intervals for censored data

The authors propose a reduction technique and versions of the EM algorithm and the vertex exchange method to perform constrained nonparametric maximum likelihood estimation of the cumulative distribution function given interval censored data. The constrained vertex exchange method can be used in practice to produce likelihood intervals for the cumulative distribution function. In particular, the authors show how to produce a confidence interval with known asymptotic coverage for the survival function given current status data.

[1]  S. Murphy Likelihood Ratio-Based Confidence Intervals in Survival Analysis , 1995 .

[2]  C. Geyer,et al.  Maximum likelihood for interval censored data: Consistency and computation , 1994 .

[3]  A. Vandal,et al.  Acute compartment syndrome: how long before muscle necrosis occurs? , 2004, CJEM.

[4]  Dong K. Kim,et al.  The Restricted EM Algorithm for Maximum Likelihood Estimation Under Linear Restrictions on the Parameters , 1995 .

[5]  Robert Gentleman,et al.  Nonparametric estimation of the bivariate cdf for arbitrarily censored data , 2002 .

[6]  J. Kalbfleisch,et al.  An Algorithm for Computing the Nonparametric MLE of a Mixing Distribution , 1992 .

[7]  J. Kalbfleisch,et al.  Constrained nonparametric maximum‐likelihood estimation for mixture models , 1998 .

[8]  Changbao Wu,et al.  Some Algorithmic Aspects of the Theory of Optimal Designs , 1978 .

[9]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[10]  Dankmar Böhning,et al.  Numerical estimation of a probability measure , 1985 .

[11]  Anton Schick,et al.  Asymptotic properties of the GMLE with case 2 interval-censored data , 1998 .

[12]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[13]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[14]  R. Wolfe,et al.  A semiparametric model for regression analysis of interval-censored failure time data. , 1985, Biometrics.

[15]  Philip E. Gill,et al.  Practical optimization , 1981 .

[16]  Order Theory and Nonparametric Analysis for Interval Censored Data , 1998 .

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  Peter Schlattmann,et al.  Interval censored data: A note on the nonparametric maximum likelihood estimator of the distribution function , 1996 .

[19]  DavidR . Thomas,et al.  Confidence Interval Estimation of Survival Probabilities for Censored Data , 1975 .

[20]  Jon A. Wellner,et al.  Likelihood Ratio Tests for Monotone Functions , 2001 .

[21]  R. Royall Statistical Evidence: A Likelihood Paradigm , 1997 .

[22]  R. Gentleman,et al.  Computational Algorithms for Censored-Data Problems Using Intersection Graphs , 2001 .

[23]  B. Lindsay Mixture models : theory, geometry, and applications , 1995 .