Formation and structure of inverted hexagonal pyramid defects in multiple quantum wells InGaN/GaN

We have determined the structure of inverted hexagonal pyramid defects (IHPs) in multiple quantum wells InGaN/GaN by high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM). HAADF STEM images reveal definitely that the IHP nucleates at a threading dislocation and grows in the form of a thin six-walled structure with InGaN/GaN {1011} layers. It has been found that IHPs start even at In-rich dots under adverse growth conditions.

[1]  M. Shiojiri,et al.  Deconvolution processing of HAADF STEM images. , 2002, Ultramicroscopy.

[2]  M. Shiojiri,et al.  Direct determination of atomic structure in multiple quantum wells InGaN/GaN , 2002 .

[3]  C. Humphreys,et al.  Analysis of contacts and V-defects in GaN device structures by transmission electron microscopy. , 2001, Journal of electron microscopy.

[4]  M. Shiojiri,et al.  Atomic-resolution annular dark-field STEM image calculations , 2001 .

[5]  M. Kawasaki,et al.  Atomic-resolution incoherent high-angle annular dark field STEM images of Si(011) , 2001 .

[6]  M. Kawasaki,et al.  Atomic-scale quantitative elemental analysis of boundary layers in a SrTiO3 ceramic condenser by high-angle annular dark-field electron microscopy , 2001 .

[7]  Nikhil Sharma,et al.  Chemical mapping and formation of V-defects in InGaN multiple quantum wells , 2000 .

[8]  M. Kawasaki,et al.  Two-dimensional distribution of As atoms doped in a Si crystal by atomic-resolution high-angle annular dark field STEM , 2000 .

[9]  J. Neugebauer,et al.  Indium induced changes in GaN(0001) surface morphology , 1999 .

[10]  Umesh K. Mishra,et al.  ENHANCED MG DOPING EFFICIENCY IN AL0.2GA0.8N/GAN SUPERLATTICES , 1999 .

[11]  Takashi Mukai,et al.  Violet InGaN/GaN/AlGaN-Based Laser Diodes Operable at 50°C with a Fundamental Transverse Mode , 1999 .

[12]  U. Valdré,et al.  Impact of electron and scanning probe microscopy on materials research , 1999 .

[13]  James S. Speck,et al.  STRUCTURAL ORIGIN OF V-DEFECTS AND CORRELATION WITH LOCALIZED EXCITONIC CENTERS IN INGAN/GAN MULTIPLE QUANTUM WELLS , 1998 .

[14]  Isamu Akasaki,et al.  Pit formation in GaInN quantum wells , 1998 .

[15]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[16]  Robert F. Davis,et al.  Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy , 1997 .

[17]  Z. Liliental-Weber,et al.  Formation Mechanism of Nanotubes in GaN , 1997 .

[18]  Akira Sakai,et al.  Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy , 1997 .

[19]  P. Vennégués,et al.  Study of open-core dislocations in GaN films on (0001) sapphire , 1997 .

[20]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[21]  Isamu Akasaki,et al.  Optical Properties of Strained AlGaN and GaInN on GaN , 1997 .

[22]  S. Nakamura,et al.  Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes , 1996 .

[23]  S. Nakamura,et al.  Nanopipes and Inversion Domains in High-Quality GaN Epitaxial Layers , 1996 .

[24]  D. Welch,et al.  Crystalline structure of AlGaN epitaxy on sapphire using AlN buffer layers , 1994 .

[25]  S J Pennycook,et al.  Direct Determination of Grain Boundary Atomic Structure in SrTiO3 , 1994, Science.

[26]  Takashi Mukai,et al.  InxGa(1−x)N/InyGa(1−y)N superlattices grown on GaN films , 1993 .

[27]  Pennycook,et al.  High-resolution incoherent imaging of crystals. , 1990, Physical review letters.