Direct determination of aluminium in serum and urine by electrothermal atomic absorption spectrometry using ruthenium as permanent modifier

[1]  D. Butcher Atomic Absorption Spectrometry, Third Edition. By Bernhard Welz and Michael Sperling , 1999 .

[2]  F. Barbosa,et al.  Tungsten-rhodium permanent chemical modifier for cadmium determination in fish slurries by electrothermal atomic absorption spectrometry , 1999 .

[3]  B. Welz,et al.  Determination of Ag, Pb and Sn in aqua regia extracts from sediments by electrothermal atomic absorption spectrometry using Ru as a permanent modifier , 1999 .

[4]  A. J. Curtius,et al.  Determination of bismuth in aluminium and in steels by electrothermal atomic absorption spectrometry after on-line separation using a minicolumn of activated carbon , 1999 .

[5]  M. Benedik,et al.  Determination of trace elements in a large series of spent peritoneal dialysis fluids by atomic absorption spectrometry. , 1999, Journal of pharmaceutical and biomedical analysis.

[6]  F. Krug,et al.  Evaluation of tungsten–rhodium coating on an integrated platform as a permanent chemical modifier for cadmium, lead, and selenium determination by electrothermal atomic absorption spectrometry , 1998 .

[7]  A. J. Curtius,et al.  Iridium and rhodium as permanent chemical modifiers for the determination of Ag, As, Bi, Cd, and Sb by electrothermal atomic absorption spectrometry , 1998 .

[8]  Mei Li,et al.  Determination of selenium in biological tissue samples rich in phosphorus using electrothermal atomi , 1998 .

[9]  M. Grasserbauer,et al.  Determination of silicon using electrothermal Zeeman atomic absorption spectrometry in presence of some transition metals as modifiers , 1998 .

[10]  A. B. Volynskii,et al.  Relative efficiency of platinum-group metal compounds as chemical modifiers in the determination of selenium by electrothermal atomic absorption spectrometry , 1998 .

[11]  D. Bohrer,et al.  Deproteinization of blood serum by acid treatment and microwave irradiation for the determinationof aluminium by electrothermal atomicabsorption spectrometry , 1998 .

[12]  K. Cai,et al.  Ruthenium, a Potential Chemical Modifier for the Determination of Lead by Graphite Furnace Atomic Absorption Spectrometry , 1997 .

[13]  A. Aitio,et al.  Analysis of aluminium in serum and urine for the biomonitoring of occupational exposure. , 1997, The Science of the total environment.

[14]  N. Zhe-ming,et al.  Atomization efficiencies for indium and tin from different atomizer surfaces in graphite furnace atomic absorption spectrometry , 1997 .

[15]  V. Krivan,et al.  Behaviour of Selenium(iv) in a Transversely Heated GraphiteAtomizer for Electrothermal Atomic Absorption Spectrometry in the Presenceof Platinum Metals as Chemical Modifiers , 1997 .

[16]  Z. Ni,et al.  Minimization of phosphate interference in the direct determination of arsenic in urine by electrothermal atomic absorption spectrometry , 1996 .

[17]  A. Hulanicki,et al.  Noble metals as permanent modifiers for the determination of mercury by electrothermal atomic absorption spectrometry , 1996 .

[18]  M. Haldimann,et al.  Determination of selenium in the serum of healthy Swiss adults and correlation to dietary intake. , 1996, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[19]  N. Zhe-ming,et al.  Influence of sample deposition and coating with Zr and Pd on the atomization kinetics of germanium in graphite furnace atomic absorption spectrometry , 1995 .

[20]  Y. Xu,et al.  Direct determination of boron in a cobalt-based alloy by graphite furnace-atomic absorption spectrometry. , 1995, Talanta.

[21]  A. Detcheva,et al.  Study of some palladium-containing chemical modifiers in graphite furnace atomic absorption spectrometry , 1995 .

[22]  R. P. Thompson,et al.  Optimal accuracy, precision and sensitivity of inductively coupled plasma optical emission spectrometry: bioanalysis of aluminium , 1995 .

[23]  R. Zamboni,et al.  Thermally stabilized iridium on an integrated, carbide-coated platform as a permanent modifier for hydride-forming elements in electrothermal atomic absorption spectrometry. Part 3. Effect of L-cysteine , 1995 .

[24]  E. Bulska,et al.  Application of palladium- and rhodium-plating of the graphite furnace in electrothermal atomic absorption spectrometry , 1995 .

[25]  Y. Thomassen,et al.  Permanent iridium modifier for electrothermal atomic absorption spectrometry , 1995 .

[26]  Yuli Xu,et al.  Determination of boron in iron- and nickel-based alloys by graphite furnace atomic absorption spectrometry with a zirconium—nickel chemical modifier and a zirconium-pretreated graphite tube , 1994 .

[27]  N. Zhe-ming,et al.  Electrothermal atomization of lead from different atomizer surfaces , 1993 .

[28]  V. Slaveykova,et al.  Comparative Study of Ruthenium, Rhodium and Palladium as Chemical Modifiers in Graphite-Furnace Atomic Absorption Spectrometry , 1992 .

[29]  J. R. Mudakavi,et al.  Palladium nitrate–magnesium nitrate modifier for electrothermal atomic absorption spectrometry. Part 5. Performance for the determination of 21 elements , 1992 .

[30]  J. R. Mudakavi,et al.  Palladium nitrate-magnesium nitrate modifier for graphite furnace atomic absorption spectrometry. Part 2. Determination of arsenic, cadmium, copper, manganese, lead, antimony, selenium and thallium in water , 1988 .

[31]  B. Welz,et al.  Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry , 1986 .

[32]  B. Welz Atomic absorption spectrometry , 1985 .

[33]  W. Wegscheider,et al.  A sensitive atomic-absorption spectrometric method for the determination of tin with atomization from impregnated graphite surfaces. , 1979, Talanta.