Low temperature thermal expansion, high temperature electrical conductivity, and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering

[1]  C. Yeh,et al.  Formation of Ti3SiC2–Al2O3 in situ composites by SHS involving thermite reactions , 2009 .

[2]  S. Saxena,et al.  Synthesis of a New MAX Compound (Cr0.5V0.5)2GeC and its Compressive Behavior up to 49 GPa , 2009 .

[3]  Yu Zhou,et al.  Phase stability and thermal expansion property of ZrO2–NdO1.5–AlO1.5 ceramics from 50 to 1550 °C , 2009 .

[4]  J. Etzkorn,et al.  Ti2GaC, Ti4GaC3 and Cr2GaC—Synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M=Ti, Cr and n=1, 3 , 2009 .

[5]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[6]  S. Lofland,et al.  Synthesis and characterization of Nb2AlC thin films , 2009 .

[7]  Y. Sakka,et al.  Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder , 2009, Journal of Materials Science.

[8]  S. Nag,et al.  Characterization of novel borides in Ti–Nb–Zr–Ta + 2B metal-matrix composites , 2009 .

[9]  Lin Cheng,et al.  Synthesis reactions for Ti3AlC2 through pulse discharge sintering TiH2/Al/C powder mixture , 2009 .

[10]  Yanchun Zhou,et al.  In Situ Reaction Synthesis and Mechanical Properties of V2AlC , 2008 .

[11]  Jiaoqun Zhu,et al.  Synthesis of high-purity bulk Ti2AlN by spark plasma sintering (SPS) , 2008 .

[12]  Yanchun Zhou,et al.  In Situ Reaction Synthesis, Electrical and Thermal, and Mechanical Properties of Nb4AlC3 , 2008 .

[13]  Yanchun Zhou,et al.  Ab initio study of polymorphism in layered ternary carbide M4AlC3 (M = V, Nb and Ta) , 2008 .

[14]  Yanchun Zhou,et al.  Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study , 2008 .

[15]  Youfu Zhou,et al.  Material removal and surface damage in EDM of Ti3SiC2 ceramic , 2008 .

[16]  Yanchun Zhou,et al.  New MAX‐Phase Compounds in the V–Cr–Al–C System , 2008 .

[17]  Yanchun Zhou,et al.  Crystal Structure of V4AlC3: A New Layered Ternary Carbide , 2008 .

[18]  Chunfeng Hu,et al.  In-situ reaction synthesis and decomposition of Ta2AlC , 2008 .

[19]  Yanchun Zhou,et al.  Nb4AlC3 : A new compound belonging to the MAX phases , 2007 .

[20]  Yongxiang Li,et al.  Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering , 2007 .

[21]  J. Etzkorn,et al.  V2AlC, V4AlC3-x (x ≈ 0.31), and V12Al3C8: Synthesis, Crystal Growth, Structure, and Superstructure , 2007 .

[22]  Yanchun Zhou,et al.  Physical and Mechanical Properties of Bulk Ta4AlC3 Ceramic Prepared by an In Situ Reaction Synthesis/Hot‐Pressing Method , 2007 .

[23]  T. Cabioc’h,et al.  A New Ternary Nanolaminate Carbide: Ti3SnC2 , 2007 .

[24]  Hu Zhang,et al.  Investigation on reliability of nanolayer-grained Ti3SiC2 via Weibull statistics , 2007 .

[25]  Lianjun Wang,et al.  Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method , 2007 .

[26]  J. Etzkorn,et al.  Ta3AlC2 and Ta4AlC3--single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique. , 2007, Inorganic chemistry.

[27]  T. Noda,et al.  Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder , 2007 .

[28]  T. Nishimura,et al.  Fabrication of silicon nitride nanoceramics—Powder preparation and sintering: A review , 2007 .

[29]  M. Barsoum,et al.  Crystal chemistry of layered carbide, Ti3(Si0.43Ge0.57)C2 , 2006 .

[30]  J. Emmerlich,et al.  Growth and Property Characterization of Epitaxial MAX-Phase Thin Films from the Tin+1(Si, Ge, Sn)Cn Systems , 2006 .

[31]  Jinbang Wang,et al.  Microstructural characterization of layered ternary Ti2AlC , 2006 .

[32]  Y. Sakka,et al.  Synthesis of dense nanocrystalline ZrO2–MgAl2O4 spinel composite , 2005 .

[33]  Ola Wilhelmsson,et al.  Growth and characterization of MAX-phase thin films , 2005 .

[34]  J. Emmerlich,et al.  Epitaxial Ti_2GeC, Ti_3GeC_2, and Ti_4GeC_3 MAX-phase thin films grown by magnetron sputtering , 2005 .

[35]  S. Kalidindi,et al.  Damage Mechanisms around Hardness Indentations in Ti3SiC2 , 2005 .

[36]  Yanchun Zhou,et al.  Preparation Of TiC Free Ti3SiC2 With Improved Oxidation Resistance By Substitution Of Si With AI , 2004 .

[37]  S. Kalidindi,et al.  Spherical Nanoindentations and Kink Bands in Ti_3SiC_2 , 2004 .

[38]  Jiaoqun Zhu,et al.  Synthesis of high-purity Ti2AlC by spark plasma sintering (SPS) of the elemental powders , 2004 .

[39]  Yong Huang,et al.  A possible mechanism on synthesis of Ti3AlC2 , 2003 .

[40]  Chang-An Wang,et al.  Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering , 2003 .

[41]  M. Barsoum,et al.  Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC , 2002 .

[42]  H. Seifert,et al.  Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC , 2002 .

[43]  M. Barsoum,et al.  Electrical conductivity, thermopower, and Hall effect of Ti 3 AlC 2 , Ti 4 AlN 3 , and Ti 3 SiC 2 , 2000 .

[44]  M. Barsoum,et al.  Structure of Ti4AlN3—a layered Mn+1AXn nitride , 2000 .

[45]  Yanchun Zhou,et al.  Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics , 1999 .

[46]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[47]  J. Schuster,et al.  Summary of constitutional data on the Aluminum-Carbon-Titanium system , 1994 .

[48]  H. Nowotny,et al.  Alloy phases crystallizing with structures which occur with non-metallic compounds , 1970 .

[49]  H. Nowotny,et al.  Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ , 1967 .

[50]  M. Barsoum,et al.  Mechanical Properties of the MAX Phases , 2004 .

[51]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .