An Algorithm for Large-Scale Quadratic Programming

We are particularly concerned in solving (1.1) when n is large and the vectors a, and matrix H are sparse. We do not restrict H to being positive (semi-)definite and consequently are content with finding local solutions to (1.1). Of course, for many classes of problem, it is known a priori that any local solution is a global one. Our method is fundamentally related to that proposed by Fletcher (1971), but makes use of sparse matrix technology (in particular, linear programming basis handling techniques) to exploit the nature of the problem. In Section 2, we describe a general framework for our method. Linear algebraic issues are considered in Section 3 together with a description of how these issues relate to solving more specific quadratic programming problems of the form

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  P. Wolfe A Technique for Resolving Degeneracy in Linear Programming , 1963 .

[3]  K. Ritter,et al.  A method for solving nonlinear maximum-problems depending on parameters , 1967 .

[4]  C. Panne,et al.  The Symmetric Formulation of the Simplex Method for Quadratic Programming , 1969 .

[5]  G. Maier A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes , 1970 .

[6]  G. Golub,et al.  Numerical techniques in mathematical programming , 1970 .

[7]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[8]  R. Fletcher A General Quadratic Programming Algorithm , 1971 .

[9]  A. George On Block Elimination for Sparse Linear Systems , 1974 .

[10]  Michael A. Saunders,et al.  A FAST, STABLE IMPLEMENTATION OF THE SIMPLEX METHOD USING BARTELS-GOLUB UPDATING , 1976 .

[11]  Klaus Ritter,et al.  An effective algorithm for quadratic minimization problems , 1976 .

[12]  D. Sorensen Updating the Symmetric Indefinite Factorization with Applications in a Modified Newton's Method , 1977 .

[13]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[14]  Philip E. Gill,et al.  Numerically stable methods for quadratic programming , 1978, Math. Program..

[15]  Jong-Shi Pang,et al.  On the solution of some (parametric) linear complementarity problems with applications to portfolio selection, structural engineering and actuarial graduation , 1979, Math. Program..

[16]  Arthur Djang Algorithmic equivalence in quadratic programming , 1979 .

[17]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[18]  Richard W. Cottle,et al.  Least-index resolution of degeneracy in quadratic programming , 1980, Math. Program..

[19]  J. Bunch,et al.  A computational method for the indefinite quadratic programming problem , 1980 .

[20]  O. L. Mangasarian,et al.  Locally unique solutions of quadratic programs, linear and nonlinear complementarity problems , 1980, Math. Program..

[21]  Andre F. Perold,et al.  Sparsity and Piecewise Linearity in Large Portfolio Optimization Problems , 1981 .

[22]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[23]  K. Ritter On Parametric Linear and Quadratic Programming Problems. , 1981 .

[24]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[25]  Philip E. Gill,et al.  Practical optimization , 1981 .

[26]  M. Powell AN UPPER TRIANGULAR MATRIX METHOD FOR QUADRATIC PROGRAMMING , 1981 .

[27]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[28]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[29]  Gene H. Golub,et al.  Matrix computations , 1983 .

[30]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[31]  Michael J. Best,et al.  Equivalence of some quadratic programming algorithms , 1984, Math. Program..

[32]  P. Gill,et al.  Sparse Matrix Methods in Optimization , 1984 .

[33]  Reinhard Weber,et al.  The range of the efficient frontier in multiple objective linear programming , 1984, Math. Program..

[34]  Nicholas I. M. Gould,et al.  A weighted gram-schmidt method for convex quadratic programming , 1984, Math. Program..

[35]  Hannu Väliaho,et al.  A unified approach to one-parametric general quadratic programming , 1985, Math. Program..

[36]  Nicholas I. M. Gould,et al.  On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..

[37]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[38]  P. Gill,et al.  A Schur-complement method for sparse quadratic programming , 1987 .

[39]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[40]  P. Gill,et al.  Maintaining LU factors of a general sparse matrix , 1987 .

[41]  P. Gill,et al.  A practical anti-cycling procedure for linear and nonlinear programming: , 1988 .

[42]  Nicholas I. M. Gould,et al.  New crash procedures for large systems of linear constraints , 1989, Math. Program..