A class of asymmetric regression models for left-censored data

A common assumption regarding the standard tobit model is the normality of the error distribution. However, asymmetry and bimodality may be present and alternative tobit models must be used. In this paper, we propose a tobit model based on the class of log-symmetric distributions, which includes as special cases heavy and light tailed distributions and bimodal distributions. We implement a likelihood-based approach for parameter estimation and derive a type of residual. We then discuss the problem of performing testing inference in the proposed class by using the likelihood ratio and gradient statistics, which are particularly convenient for tobit models, as they do not require the information matrix. A thorough Monte Carlo study is presented to evaluate the performance of the maximum likelihood estimators and the likelihood ratio and gradient tests. Finally, we illustrate the proposed methodology by using a real-world data set.

[1]  On Asymmetric Regression Models with Allowance for Temporal Dependence , 2020 .

[2]  Helton Saulo,et al.  Log‐symmetric regression models: information criteria and application to movie business and industry data with economic implications , 2019, Applied Stochastic Models in Business and Industry.

[3]  N. Balakrishnan,et al.  Birnbaum‐Saunders distribution: A review of models, analysis, and applications , 2018, Applied Stochastic Models in Business and Industry.

[4]  Manuel Galea,et al.  Generalized Tobit models: diagnostics and application in econometrics , 2018 .

[5]  Robert G. Aykroyd,et al.  Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data , 2019 .

[6]  Luis Hernando Vanegas,et al.  Log-symmetric regression models under the presence of non-informative left- or right-censored observations , 2017 .

[7]  Gilberto A. Paula,et al.  An extension of log-symmetric regression models: R codes and applications , 2016 .

[8]  Gilberto A. Paula,et al.  Log-symmetric distributions: Statistical properties and parameter estimation , 2016 .

[9]  Artur Lemonte The Gradient Test: Another Likelihood-Based Test , 2016 .

[10]  S. Ferrari,et al.  Small‐sample testing inference in symmetric and log‐symmetric linear regression models , 2016, 1602.00769.

[11]  S. Zacks,et al.  Another look at Huber’s estimator: A new minimax estimator in regression with stochastically bounded noise , 2008 .

[12]  Artur J. Lemonte The Gradient Statistic , 2016 .

[13]  Victor H. Lachos,et al.  Influence diagnostics for Student-t censored linear regression models , 2015 .

[14]  Aldo M. Garay,et al.  Bayesian analysis of censored linear regression models with scale mixtures of normal distributions , 2015 .

[15]  Luis Hernando Vanegas,et al.  A semiparametric approach for joint modeling of median and skewness , 2015 .

[16]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[17]  Heleno Bolfarine,et al.  Asymmetric regression models with limited responses with an application to antibody response to vaccine , 2013, Biometrical journal. Biometrische Zeitschrift.

[18]  Heleno Bolfarine,et al.  The Alpha-power Tobit Model , 2013 .

[19]  Reinaldo Boris Arellano-Valle,et al.  Student-t censored regression model: properties and inference , 2012, Stat. Methods Appl..

[20]  Dennis R. Helsel,et al.  Statistics for Censored Environmental Data Using Minitab and R , 2012 .

[21]  Cristian Villegas,et al.  Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis , 2011, IEEE Transactions on Reliability.

[22]  Artur J. Lemonte,et al.  Testing hypotheses in the Birnbaum-Saunders distribution under type-II censored samples , 2010, Comput. Stat. Data Anal..

[23]  Manuel González,et al.  Influence diagnostics in the tobit censored response model , 2010, Stat. Methods Appl..

[24]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[25]  M. C. Jones On reciprocal symmetry , 2008 .

[26]  Mia Hubert,et al.  An adjusted boxplot for skewed distributions , 2008, Comput. Stat. Data Anal..

[27]  Víctor Leiva,et al.  A new class of survival regression models with heavy-tailed errors: robustness and diagnostics , 2008, Lifetime data analysis.

[28]  Rafał Podlaski,et al.  Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution , 2008 .

[29]  Gilberto A. Paula,et al.  Influence diagnostics in log-Birnbaum-Saunders regression models with censored data , 2007, Comput. Stat. Data Anal..

[30]  José A. Díaz-García,et al.  Erratum to “A new family of life distributions based on the elliptically contoured distributions”: [J. Statist. Plann. Inference 128(2) (2005) 445–457] , 2007 .

[31]  José A. Díaz-García,et al.  A new family of life distributions based on the elliptically contoured distributions , 2005 .

[32]  Debasis Kundu,et al.  Modified moment estimation for the two-parameter Birnbaum-Saunders distribution , 2003, Comput. Stat. Data Anal..

[33]  George G. Judge,et al.  Econometric foundations , 2000 .

[34]  Andre Lucas,et al.  Robustness of the student t based M-estimator , 1997 .

[35]  Peter K. Dunn,et al.  Randomized Quantile Residuals , 1996 .

[36]  P. R. Nelson Continuous Univariate Distributions Volume 2 , 1996 .

[37]  L H Moulton,et al.  A mixture model with detection limits for regression analyses of antibody response to vaccine. , 1995, Biometrics.

[38]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[39]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[40]  Peter M. Bentler,et al.  Statistical Inference Based on Pseudo-Maximum Likelihood Estimators in Elliptical Populations , 1993 .

[41]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[42]  W. Ott A physical explanation of the lognormality of pollutant concentrations. , 1990, Journal of the Air & Waste Management Association.

[43]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[44]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[45]  T. Amemiya Tobit models: A survey , 1984 .

[46]  B. Dhillon Life Distributions , 1981, IEEE Transactions on Reliability.

[47]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[48]  Z. Birnbaum,et al.  A new family of life distributions , 1969, Journal of Applied Probability.

[49]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[50]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .