Evaluation of an improved version of SAIL model for simulating bidirectional reflectance of sugar beet canopies

[1]  H. T. Breece Iii,et al.  Bidirectional scattering characteristics of healthy green soybean and corn leaves in vivo. , 1971, Applied optics.

[2]  T. Nilson A theoretical analysis of the frequency of gaps in plant stands , 1971 .

[3]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[4]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[5]  V. Vanderbilt,et al.  Plant Canopy Specular Reflectance Model , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[6]  G. Campbell Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution , 1986 .

[7]  Ranga B. Myneni,et al.  The hot spot of vegetation canopies , 1988 .

[8]  Juhan Ross,et al.  The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance , 1989 .

[9]  J. M. Norman,et al.  Leaf bidirectional reflectance and transmittance in corn and soybean , 1989 .

[10]  A. Marshak The effect of the hot spot on the transport equation in plant canopies , 1989 .

[11]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[12]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[13]  T. Nilson,et al.  Approximate Analytical Methods for Calculating the Reflection Functions of Leaf Canopies in Remote Sensing Applications , 1991 .

[14]  Ranga B. Myneni,et al.  Photon-Vegetation Interactions , 1991, Springer Berlin Heidelberg.

[15]  Bruno Andrieu,et al.  Estimation de la concentration en chlorophylles de feuilles par mesure de leur réflectance ou par analyse numérique de photographies prises au laboratoire , 1992 .

[16]  David L.B. Jupp,et al.  An analytical and computationally efficient reflectance model for leaf canopies , 1993 .

[17]  M. Steven,et al.  Gap frequency and canopy architecture of sugar beet and wheat crops , 1993 .

[18]  Qin Wenhan,et al.  Modeling bidirectional reflectance of multicomponent vegetation canopies , 1993 .

[19]  S. Jacquemoud Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .

[20]  Xiang Yueqin,et al.  On the hotspot effect of leaf canopies: modeling study and influence of leaf shape , 1994 .

[21]  B. Andrieu,et al.  A direct method to measure bidirectional gap fraction in vegetation canopies , 1994 .

[22]  A. Kuusk A multispectral canopy reflectance model , 1994 .

[23]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[24]  S. Ustin,et al.  Three-dimensional radiation transfer modeling in a dicotyledon leaf. , 1996, Applied optics.