Evolution and selection of trichromatic vision in primates

Trichromatic colour vision is of considerable importance to primates but is absent in other eutherian mammals. Primate colour vision is traditionally believed to have evolved for finding food in the forest. Recent work has tested the ecological importance of trichromacy to primates, both by measuring the spectral and chemical properties of food eaten in the wild, and by testing the relative foraging abilities of dichromatic and trichromatic primates. Molecular studies have revealed the genetic mechanisms of the evolution of trichromacy, and are providing new insight into visual pigment gene expression and colour vision defects. By drawing together work from these different fields, we can gain a better understanding of how natural selection has shaped the evolution of trichromatic colour vision in primates and also about mechanisms of gene duplication, heterozygote advantage and balancing selection.

[1]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[2]  J. Mollon,et al.  Molecular evolution of trichromacy in primates , 1998, Vision Research.

[3]  W. Li,et al.  Gene conversion and natural selection in the evolution of X-linked color vision genes in higher primates. , 1996, Molecular biology and evolution.

[4]  J. Neitz,et al.  Recent evolution of uniform trichromacy in a New World monkey , 1998, Vision Research.

[5]  Y. Tan,et al.  Vision: Trichromatic vision in prosimians , 1999, Nature.

[6]  Vivien A Casagrande,et al.  Morphology of P and M retinal ganglion cells of the bush baby , 1998, Vision Research.

[7]  G. H. Jacobs,et al.  Spectral sensitivity of macaque monkeys measured with ERG flicker photometry , 1997, Visual Neuroscience.

[8]  G. H. Jacobs,et al.  ERG Measurements of the Spectral Sensitivity of Common Chimpanzee (Pan troglodytes) , 1996, Vision Research.

[9]  D. Hewett‐Emmett,et al.  Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  John D. Mollon,et al.  Structure and evolution of the polymorphic photopigment gene of the marmoset , 1993, Vision Research.

[11]  M. Vorobyev,et al.  Colour vision as an adaptation to frugivory in primates , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Jay Neitz,et al.  Genetic basis of polymorphism in the color vision of platyrrhine monkeys , 1993, Vision Research.

[13]  D. Hewett‐Emmett,et al.  Molecular Genetics of Spectral Tuning in New World Monkey Color Vision , 1998, Journal of Molecular Evolution.

[14]  N. Dominy,et al.  Ecological importance of trichromatic vision to primates , 2001, Nature.

[15]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  N. Dominy,et al.  The sensory ecology of primate food perception , 2001 .

[17]  G. H. Jacobs,et al.  Uniformity of colour vision in Old World monkeys , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  C. Groves,et al.  Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. , 1998, Molecular phylogenetics and evolution.

[19]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[20]  J D Mollon,et al.  Photosensitive and photostable pigments in the retinae of Old World monkeys. , 1991, The Journal of experimental biology.

[21]  N. Mundy,et al.  Single‐copy nuclear DNA sequences obtained from noninvasively collected primate feces , 2002, American journal of primatology.

[22]  G. H. Jacobs,et al.  Polymorphism of the middle wavelength cone in two species of south american monkey: Cebus apella and callicebus moloch , 1987, Vision Research.

[23]  G. H. Jacobs Variations in primate color vision: Mechanisms and utility , 2005 .

[24]  J. Mollon,et al.  Did trichromacy evolve for frugivory or folivory , 2003 .

[25]  M. Hirai,et al.  Genomic and spectral analyses of long to middle wavelength-sensitive visual pigments of common marmoset (Callithrix jacchus). , 2001, Gene.

[26]  J. Bowmaker Evolution of colour vision in vertebrates , 1998, Eye.

[27]  H. Komatsu,et al.  Dichromatism in macaque monkeys. , 1999, Nature.

[28]  H. Komatsu,et al.  Variations in long- and middle-wavelength-sensitive opsin gene loci in crab-eating monkeys , 2002, Vision Research.

[29]  L. Battisti,et al.  Sequence divergence of the red and green visual pigments in great apes and humans. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  N. Caine,et al.  Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  John D. Mollon,et al.  Normal and Defective Colour Vision , 2003 .

[32]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[33]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[34]  G. H. Jacobs,et al.  Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis) , 1987, Vision Research.

[35]  J. Mollon,et al.  Dichromats detect colour-camouflaged objects that are not detected by trichromats , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  G. H. Jacobs,et al.  Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatus) , 1996, American journal of primatology.

[38]  Paul R. Martin,et al.  Visual responses of ganglion cells of a New‐World primate, the capuchin monkey, Cebus apella , 2000, The Journal of physiology.

[39]  M. Vorobyev,et al.  Animal colour vision — behavioural tests and physiological concepts , 2003, Biological reviews of the Cambridge Philosophical Society.

[40]  Spectral Sensitivity of Gibbons: Implications for Photopigments and Color Vision , 2001, Folia Primatologica.

[41]  J. Mollon,et al.  Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys , 1994, Vision Research.

[42]  I. Maumenee,et al.  Genetic basis of total colourblindness among the Pingelapese islanders , 2000, Nature Genetics.

[43]  Jeremy Nathans,et al.  Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Ross,et al.  Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. , 2001, Journal of human evolution.

[45]  G. H. Jacobs,et al.  The prevalence of defective color vision in Old World monkeys and apes , 2001 .

[46]  J D Mollon,et al.  Catarrhine photopigments are optimized for detecting targets against a foliage background. , 2000, The Journal of experimental biology.

[47]  G. H. Jacobs,et al.  Photopigments and color vision in the nocturnal monkey,Aotus , 1993, Vision Research.

[48]  J. Mollon,et al.  Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  M. Tovée Colour vision in New World monkeys and the single-locus X-chromosome theory. , 1993, Brain, behavior and evolution.

[50]  J. Kremers,et al.  M-cone opsin gene number does not correlate with variation in L/M-cone sensitivity , 2002, Vision Research.

[51]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[52]  Wen-Hsiung Li,et al.  Allelic Variation in the Squirrel Monkey X-Linked Color Vision Gene: Biogeographical and Behavioral Correlates , 2002, Journal of Molecular Evolution.

[53]  J D Mollon,et al.  Chromaticity as a signal of ripeness in fruits taken by primates. , 2000, The Journal of experimental biology.

[54]  D. Dacey,et al.  This paper was presented at a colloquium entitled ‘ ‘ Vision : From Photon to Perception , ’ ’ organized by , 1998 .

[55]  D. Hewett‐Emmett,et al.  Unexpected Conservation of the X-Linked Color Vision Gene in Nocturnal Prosimians: Evidence from Two Bush Babies , 1997, Journal of Molecular Evolution.

[56]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[57]  T.D.B. Yuen,et al.  Colour Cues for Leaf Food Selection by Long-Tailed Macaques (Macaca fascicularis) with a New Suggestion for the Evolution of Trichromatic Colour Vision , 1998, Folia Primatologica.

[58]  G. H. Jacobs,et al.  Photopigments and colour vision in New World monkeys from the family Atelidae , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[60]  G. H. Jacobs,et al.  Opsin gene and photopigment polymorphism in a prosimian primate , 2002, Vision Research.

[61]  G. H. Jacobs,et al.  Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus) , 1993, American journal of primatology.

[62]  N. Mundy,et al.  Trans‐specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates , 2002, Molecular ecology.

[63]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.