Learning to Learn

Preface. Part I: Overview Articles. 1. Learning to Learn: Introduction and Overview S. Thrun, L. Pratt. 2. A Survey of Connectionist Network Reuse Through Transfer L. Pratt, B. Jennings. 3. Transfer in Cognition A. Robins. Part II: Prediction. 4. Theoretical Models of Learning to Learn J. Baxter. 5. Multitask Learning R. Caruana. 6. Making a Low-Dimensional Representation Suitable for Diverse Tasks N. Intrator, S. Edelman. 7. The Canonical Distortion Measure for Vector Quantization and Function Approximation J. Baxter. 8. Lifelong Learning Algorithms S. Thrun. Part III: Relatedness. 9. The Parallel Transfer of Task Knowledge Using Dynamic Learning Rates Based on a Measure of Relatedness D.L. Silver, R.E. Mercer. 10. Clustering Learning Tasks and the Selective Cross-Task Transfer of Knowledge S. Thrun, J. O'Sullivan. Part IV: Control. 11. CHILD: A First Step Towards Continual Learning M.B. Ring. 12. Reinforcement Learning with Self-Modifying Policies J. Schmidhuber, et al. 13. Creating Advice-Taking Reinforcement Learners R. Maclin, J.W. Shavlik. Contributing Authors. Index.

[1]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[2]  John McCarthy,et al.  Programs with common sense , 1960 .

[3]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[4]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[5]  R. Shepard Metric structures in ordinal data , 1966 .

[6]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[7]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[8]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.

[9]  David Hume A Treatise of Human Nature: Being an Attempt to introduce the experimental Method of Reasoning into Moral Subjects , 1972 .

[10]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[11]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[12]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[13]  Tom Michael Mitchell Version spaces: an approach to concept learning. , 1979 .

[14]  J. Albus Mechanisms of planning and problem solving in the brain , 1979 .

[15]  I. Good Some history of the hierarchical Bayesian methodology , 1980 .

[16]  Philip Klahr,et al.  Advice-Taking and Knowledge Refinement: An Iterative View of Skill Acquisition , 1980 .

[17]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[18]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[19]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[20]  C. Roads,et al.  The Handbook of Artificial Intelligence, Volume 1 , 1982 .

[21]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[22]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Douglas B. Lenat,et al.  Theory Formation by Heuristic Search , 1983, Artificial Intelligence.

[24]  Leonid A. Levin,et al.  Randomness Conservation Inequalities; Information and Independence in Mathematical Theories , 1984, Inf. Control..

[25]  Paul E. Utgoff,et al.  Shift of bias for inductive concept learning , 1984 .

[26]  Ray J. Solomonoff,et al.  The Application of Algorithmic Probability to Problems in Artificial Intelligence , 1985, UAI.

[27]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[28]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[29]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[30]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[31]  J. Brigham The Influence of Race on Face Recognition , 1986 .

[32]  P. Ut Goff,et al.  Machine learning of inductive bias , 1986 .

[33]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[34]  Leslie Pack Kaelbling Rex: A Symbolic Language for the Design and Parallel Implementation of Embedded Systems , 1987 .

[35]  Douglas H. Fisher,et al.  Conceptual Clustering, Learning from Examples, and Inference , 1987 .

[36]  Gerald DeJong,et al.  Schema Acquisition from One Example: Psychological Evidence for Explanation-Based Learning. , 1987 .

[37]  Charles W. Anderson,et al.  Strategy Learning with Multilayer Connectionist Representations , 1987 .

[38]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[39]  Stewart W. Wilson Hierarchical Credit Allocation in a Classifier System , 1987, IJCAI.

[40]  G. Logan Toward an instance theory of automatization. , 1988 .

[41]  Larry A. Rendell,et al.  Layered Concept-Learning and Dynamically Variable Bias Management , 1987, IJCAI.

[42]  I. Borg Multidimensional similarity structure analysis , 1987 .

[43]  Terrence J. Sejnowski,et al.  NETtalk: a parallel network that learns to read aloud , 1988 .

[44]  Allen Ginsberg,et al.  Automatic Refinement of Expert System Knowledge Bases , 1988 .

[45]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[46]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[47]  E. Kehoe A layered network model of associative learning: learning to learn and configuration. , 1988, Psychological review.

[48]  Jude Shavlik,et al.  An Approach to Combining Explanation-based and Neural Learning Algorithms , 1989 .

[49]  Geoffrey E. Hinton,et al.  Learning distributed representations of concepts. , 1989 .

[50]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[51]  Joachim Diederich "Learning by Instruction" in connectionist Systems , 1989, ML.

[52]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[53]  Limin Fu Integration of neural heuristics into knowledge-based inference , 1989, International 1989 Joint Conference on Neural Networks.

[54]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[55]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[56]  Leslie Pack Kaelbling,et al.  Action and planning in embedded agents , 1990, Robotics Auton. Syst..

[57]  Jude Shavlik,et al.  Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks , 1990, AAAI.

[58]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[59]  Richard S. Sutton,et al.  Integrated Modeling and Control Based on Reinforcement Learning and Dynamic Programming , 1990, NIPS 1990.

[60]  Michael Hucka,et al.  Correcting and Extending Domain Knowledge using Outside Guidance , 1990, ML.

[61]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[62]  J. Rennie Cancer catcher. Neural net catches errors that slip through Pap tests. , 1990, Scientific American.

[63]  Thomas G. Dietterich,et al.  A Comparative Study of ID3 and Backpropagation for English Text-to-Speech Mapping , 1990, ML.

[64]  David Chapman,et al.  Vision, instruction, and action , 1990 .

[65]  Andrew W. Moore,et al.  Efficient memory-based learning for robot control , 1990 .

[66]  Scott E. Fahlman,et al.  The Recurrent Cascade-Correlation Architecture , 1990, NIPS.

[67]  Dana H. Ballard,et al.  Active Perception and Reinforcement Learning , 1990, Neural Computation.

[68]  Yaser S. Abu-Mostafa,et al.  Learning from hints in neural networks , 1990, J. Complex..

[69]  S. C. Suddarth,et al.  Rule-Injection Hints as a Means of Improving Network Performance and Learning Time , 1990, EURASIP Workshop.

[70]  Jack Mostow,et al.  Direct Transfer of Learned Information Among Neural Networks , 1991, AAAI.

[71]  Michael I. Jordan,et al.  Hierarchies of Adaptive Experts , 1991, NIPS.

[72]  Thomas G. Dietterich Knowledge Compilation: Bridging the Gap between Specification and Implementation , 1991 .

[73]  Christopher G. Atkeson,et al.  Using locally weighted regression for robot learning , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[74]  Lambert E. Wixson,et al.  Scaling Reinforcement Learning Techniques via Modularity , 1991, ML.

[75]  Steven D. Whitehead,et al.  A Complexity Analysis of Cooperative Mechanisms in Reinforcement Learning , 1991, AAAI.

[76]  H. L. Roitblat,et al.  Cognitive action theory as a control architecture , 1991 .

[77]  Terence D. Sanger,et al.  A tree-structured adaptive network for function approximation in high-dimensional spaces , 1991, IEEE Trans. Neural Networks.

[78]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[79]  Gary L. Drescher,et al.  Made-up minds - a constructivist approach to artificial intelligence , 1991 .

[80]  Michael J. Pazzani,et al.  A Knowledge-intensive Approach to Learning Relational Concepts , 1991, ML.

[81]  Raymond J. Mooney,et al.  Theory Refinement with Noisy Data , 1991 .

[82]  Stuart J. Russell,et al.  Principles of Metareasoning , 1989, Artif. Intell..

[83]  Steven C. Suddarth,et al.  Symbolic-Neural Systems and the Use of Hints for Developing Complex Systems , 1991, Int. J. Man Mach. Stud..

[84]  Paul E. Utgoff,et al.  Two Kinds of Training Information For Evaluation Function Learning , 1991, AAAI.

[85]  Yann LeCun,et al.  Tangent Prop - A Formalism for Specifying Selected Invariances in an Adaptive Network , 1991, NIPS.

[86]  Osamu Watanabe,et al.  Kolmogorov Complexity and Computational Complexity , 2012, EATCS Monographs on Theoretical Computer Science.

[87]  Petri Koistinen,et al.  Using additive noise in back-propagation training , 1992, IEEE Trans. Neural Networks.

[88]  Geoffrey E. Hinton,et al.  Feudal Reinforcement Learning , 1992, NIPS.

[89]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[90]  Gerald DeJong Investigating Explanation-Based Learning , 1992 .

[91]  Manuela Veloso Learning by analogical reasoning in general problem-solving , 1992 .

[92]  J. Jeffrey Mahoney and Raymond J. Mooney,et al.  Combining Symbolic and Neural Learning to Revise Probabilistic Theories , 1992 .

[93]  Long-Ji Lin,et al.  Reinforcement learning for robots using neural networks , 1992 .

[94]  Yann LeCun,et al.  Efficient Pattern Recognition Using a New Transformation Distance , 1992, NIPS.

[95]  Tom M. Mitchell,et al.  A Personal Learning Apprentice , 1992, AAAI.

[96]  Lonnie Chrisman,et al.  Reinforcement Learning with Perceptual Aliasing: The Perceptual Distinctions Approach , 1992, AAAI.

[97]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[98]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[99]  Nathan Intrator,et al.  Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions , 1992, Neural Networks.

[100]  Lorien Y. Pratt,et al.  Discriminability-Based Transfer between Neural Networks , 1992, NIPS.

[101]  Yaser S. Abu-Mostafa,et al.  A Method for Learning From Hints , 1992, NIPS.

[102]  Richard S. Sutton,et al.  Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta , 1992, AAAI.

[103]  Mark B. Ring Learning Sequential Tasks by Incrementally Adding Higher Orders , 1992, NIPS.

[104]  Paul E. Utgoff,et al.  A Teaching Method for Reinforcement Learning , 1992, ML.

[105]  Sebastian Thrun,et al.  Explanation-Based Neural Network Learning for Robot Control , 1992, NIPS.

[106]  C. Lee Giles,et al.  Training Second-Order Recurrent Neural Networks using Hints , 1992, ML.

[107]  M. Fine,et al.  Validation of a pneumonia prognostic index using the MedisGroups Comparative Hospital Database. , 1993, The American journal of medicine.

[108]  Tal Grossman,et al.  Use of Bad Training Data for Better Predictions , 1993, NIPS.

[109]  Devika Subramanian,et al.  A Multistrategy Learning Scheme for Agent Knowledge Acquisition , 1993, Informatica.

[110]  Andreas Weigend,et al.  On overfitting and the effective number of hidden units , 1993 .

[111]  Lorien Y. Pratt,et al.  Transferring previously learned back-propagation neural networks to new learning tasks , 1993 .

[112]  John E. Laird,et al.  Learning Procedures from Interactive Natural Language Instructions , 1993, ICML.

[113]  Leslie Pack Kaelbling,et al.  Learning to Achieve Goals , 1993, IJCAI.

[114]  Jürgen Schmidhuber,et al.  Planning simple trajectories using neural subgoal generators , 1993 .

[115]  Sebastian Thrun,et al.  Exploration and model building in mobile robot domains , 1993, IEEE International Conference on Neural Networks.

[116]  Tomaso Poggio,et al.  Example Based Image Analysis and Synthesis , 1993 .

[117]  Rich Caruana,et al.  Multitask Learning: A Knowledge-Based Source of Inductive Bias , 1993, ICML.

[118]  Andrew McCallum,et al.  Overcoming Incomplete Perception with Utile Distinction Memory , 1993, ICML.

[119]  Sebastian Thrun,et al.  Integrating Inductive Neural Network Learning and Explanation-Based Learning , 1993, IJCAI.

[120]  Lorien Y. Pratt,et al.  Non-literal Transfer Among Neural Network Learners , 1993 .

[121]  Dean A. Pomerleau,et al.  Knowledge-Based Training of Artificial Neural Networks for Autonomous Robot Driving , 1993 .

[122]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[123]  Nathan Intrator,et al.  Combining Exploratory Projection Pursuit and Projection Pursuit Regression with Application to Neural Networks , 1993, Neural Computation.

[124]  Long Ji Lin,et al.  Scaling Up Reinforcement Learning for Robot Control , 1993, International Conference on Machine Learning.

[125]  J. Elman Learning and development in neural networks: the importance of starting small , 1993, Cognition.

[126]  A. Waibel,et al.  Multi-speaker/speaker-independent architectures for the multi-state time delay neural network , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[127]  Yaser S. Abu-Mostafa,et al.  Hints and the VC Dimension , 1993, Neural Computation.

[128]  W. Ahn,et al.  Psychological Studies of Explanation—Based Learning , 1993 .

[129]  Leslie Pack Kaelbling,et al.  Hierarchical Learning in Stochastic Domains: Preliminary Results , 1993, ICML.

[130]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[131]  C. L. Giles,et al.  Constructive learning of recurrent neural networks , 1993, IEEE International Conference on Neural Networks.

[132]  Sebastian Thrun,et al.  A lifelong learning perspective for mobile robot control , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[133]  Bernard Widrow,et al.  The basic ideas in neural networks , 1994, CACM.

[134]  Rich Caruana,et al.  Learning Many Related Tasks at the Same Time with Backpropagation , 1994, NIPS.

[135]  M. Kauffman,et al.  Off-Training Set Error and A Priori Distinctions Between Learning Algorithms , 1994 .

[136]  Hava T. Siegelmann Neural Programming Language , 1994, AAAI.

[137]  Mark S. Boddy,et al.  Deliberation Scheduling for Problem Solving in Time-Constrained Environments , 1994, Artif. Intell..

[138]  Patrick Suppes,et al.  Language and Learning for Robots , 1994 .

[139]  Gérard Dreyfus,et al.  Pairwise Neural Network Classifiers with Probabilistic Outputs , 1994, NIPS.

[140]  Raúl E. Valdés-Pérez,et al.  A Powerful Heuristic for the Discovery of Complex Patterned Behaviour , 1994, ICML.

[141]  Joachim M. Buhmann,et al.  Multidimensional Scaling and Data Clustering , 1994, NIPS.

[142]  Jerome H. Friedman,et al.  Flexible Metric Nearest Neighbor Classification , 1994 .

[143]  Juergen Schmidhuber,et al.  On learning how to learn learning strategies , 1994 .

[144]  Stefan Schaal,et al.  Robot learning by nonparametric regression , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[145]  Jude W. Shavlik,et al.  Knowledge-Based Artificial Neural Networks , 1994, Artif. Intell..

[146]  Raymond J. Mooney,et al.  Theory Refinement Combining Analytical and Empirical Methods , 1994, Artif. Intell..

[147]  Tom M. Mitchell,et al.  Experience with a learning personal assistant , 1994, CACM.

[148]  Nils J. Nilsson,et al.  Teleo-Reactive Programs for Agent Control , 1993, J. Artif. Intell. Res..

[149]  Jude W. Shavlik,et al.  Using Sampling and Queries to Extract Rules from Trained Neural Networks , 1994, ICML.

[150]  Sebastian Thrun,et al.  Finding Structure in Reinforcement Learning , 1994, NIPS.

[151]  S. Thrun,et al.  A Robot That Improves Its Ability To , 1995 .

[152]  Jude W. Shavlik,et al.  in Advances in Neural Information Processing , 1996 .

[153]  Corso Elvezia Discovering Solutions with Low Kolmogorov Complexity and High Generalization Capability , 1995 .

[154]  Sebastian Thrun,et al.  Lifelong Learning: A Case Study. , 1995 .

[155]  S. Edelman Representation of Similarity in 3D Object Discrimination , 1995 .

[156]  S. Edelman,et al.  Explorations of Shape Space , 1995 .

[157]  Sebastian Thrun,et al.  Learning One More Thing , 1994, IJCAI.

[158]  Garrison W. Cottrell,et al.  Towards Instructable Connectionist Systems , 1995 .

[159]  Sebastian Thrun,et al.  Is Learning The n-th Thing Any Easier Than Learning The First? , 1995, NIPS.

[160]  Tom M. Mitchell,et al.  Using the Future to Sort Out the Present: Rankprop and Multitask Learning for Medical Risk Evaluation , 1995, NIPS.

[161]  Halbert White,et al.  Bootstrapping Confidence Intervals for Clinical Input Variable Effects in a Network Trained to Identify the Presence of Acute Myocardial Infarction , 1995, Neural Computation.

[162]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[163]  Michael Gasser,et al.  Transfer in a Connectionist Model of the Acquisition of Morphology , 1995, ArXiv.

[164]  D. Bairaktaris,et al.  Transfer of learning in backpropagation networks and in related neural network models , 1995 .

[165]  Sebastian Thrun,et al.  Explanation-based neural network learning a lifelong learning approach , 1995 .

[166]  Carla E. Brodley Recursive automatic algorithm selection for inductive learning , 1995 .

[167]  Sebastian Thrun,et al.  An approach to learning mobile robot navigation , 1995, Robotics Auton. Syst..

[168]  Shumeet Baluja,et al.  Using the Representation in a Neural Network's Hidden Layer for Task-Specific Focus of Attention , 1995, IJCAI.

[169]  Jonathan Baxter,et al.  Learning internal representations , 1995, COLT '95.

[170]  Shimon Edelman,et al.  Receptive field spaces and class-based generalization from a single view in face recognition , 1995 .

[171]  Anthony Stentz,et al.  Sensor fusion for autonomous outdoor navigation using neural networks , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[172]  Giovanni Soda,et al.  Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks , 1995, IEEE Trans. Knowl. Data Eng..

[173]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[174]  Jonathan Baxter,et al.  Learning Model Bias , 1995, NIPS.

[175]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[176]  Richard Maclin Learning From Instruction And Experience: Methods For Incorporating Procedural Domain Theories Into , 1995 .

[177]  Nathan Intrator,et al.  Bootstrapping with Noise: An Effective Regularization Technique , 1996, Connect. Sci..

[178]  Corso Elvezia Hq-learning: Discovering Markovian Subgoals for Non-markovian Reinforcement Learning , 1996 .

[179]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[180]  Bartlett W. Mel SEEMORE: a view-based approach to 3-D object recognition using multiple visual cues , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[181]  Sebastian Thrun,et al.  Discovering Structure in Multiple Learning Tasks: The TC Algorithm , 1996, ICML.

[182]  Andrew McCallum,et al.  Learning to Use Selective Attention and Short-Term Memory in Sequential Tasks , 1996 .

[183]  Huan Liu,et al.  A Probabilistic Approach to Feature Selection - A Filter Solution , 1996, ICML.

[184]  Rich Caruana,et al.  Promoting Poor Features to Supervisors: Some Inputs Work Better as Outputs , 1996, NIPS.

[185]  Leslie Pack Kaelbling,et al.  On reinforcement learning for robots , 1996, IROS.

[186]  Sebastian Thrun,et al.  Explanation-based neural network learning , 1996 .

[187]  Jonathan Baxter,et al.  A Bayesian/information theoretic model of bias learning , 2019, COLT '96.

[188]  Jürgen Schmidhuber,et al.  Solving POMDPs with Levin Search and EIRA , 1996, ICML.

[189]  Juergen Schmidhuber,et al.  Incremental self-improvement for life-time multi-agent reinforcement learning , 1996 .

[190]  R. Tibshirani,et al.  Combining Estimates in Regression and Classification , 1996 .

[191]  Paul W. Munro,et al.  Competition Among Networks Improves Committee Performance , 1996, NIPS.

[192]  Constantin F. Aliferis,et al.  An evaluation of machine-learning methods for predicting pneumonia mortality , 1997, Artif. Intell. Medicine.

[193]  Jürgen Schmidhuber,et al.  Discovering Neural Nets with Low Kolmogorov Complexity and High Generalization Capability , 1997, Neural Networks.

[194]  S. Hanson,et al.  Mixture Models for Learning from Incomplete Data , 1997 .

[195]  J. Friedman,et al.  Predicting Multivariate Responses in Multiple Linear Regression , 1997 .

[196]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[197]  Joachim M. Buhmann,et al.  Data clustering and learning , 1998 .

[198]  B. Habibi,et al.  Pengi : An Implementation of A Theory of Activity , 1998 .

[199]  Sebastian Thrun,et al.  Clustering Learning Tasks and the Selective Cross-Task Transfer of Knowledge , 1998, Learning to Learn.

[200]  Joel D. Martin Goal-directed clustering , 2022 .