[Collagens: why such a structural complexity?].
暂无分享,去创建一个
The collagens are a family of extracellular fibrillar proteins, characterized by the presence of one or several domains termed "triple helix", that are made of three polypeptide chains folded around each other. They elicit a huge worldwide research activity, marked every year by the publishing of dozens of books and thousands of papers. This family is presently represented by more than 16 individualized types, all differing by their molecular structure and by the way helical and globular domains are arranged. In any case, however, at least one triple helical domain exists. It is formed by the association of three polypeptide chains, each of them containing a glycine every three residues and many proline or hydroxyproline residues, and attests for the belonging of the protein to the collagen group. These multiple molecular forms and their specific architecture raise questions that remain unsolved. Why is this triple helix structure adopted in the case of collagens? Is it because the simple alpha helix of protein cannot extend over more than a few nanometers and is not solid enough? Why not a double helix like that of DNA? It would probably not be rigid enough. Why are there many globular domains interspersed between fibrillar ones? Probably these domains are useful for the association of peptide chains in register prior to their folding, then they participate in the transport of the elementary molecules from the synthesizing cells to their final place in the connective tissue and, finally, they insert the molecules into their specific place inside the growing fibrils. Collagen fibres as they are evidenced by histological methods, for instance in tendons, are of complex structure. Most of their constituting sub-units are type I tropocollagen molecules but they also contain in their center a filament of type V collagen that seems to serve as a guide during their edification. On the surface of the fibres are molecules of type III collagen that limit the growth in diameter and also type XII molecules that serve to bind the fibres to the surrounding substances. The collagen type multiplicity is explained by their various functions (mechanical role for tendons and ligaments, functions of wrapping around muscle cells, basement membrane role as a support for endothelial cells, function of glomerular filter, etc.). The fact that every collagen type contains several different polypeptide chains remains poorly explained. It may serve for the orientation of every elementary molecule inside the complex array of the polymer.(ABSTRACT TRUNCATED AT 400 WORDS)